大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(正在更新!)

章节内容

上节我们完成了如下的内容:


Flink CEP 案例

检测交易活跃用户

超时未交付

Flink SQL

Flink SQL 是 Apache Flink 提供的一种高层次的查询语言接口,它基于 SQL 标准,为开发者提供了处理流式数据和批处理数据的能力。Flink SQL 允许用户使用标准 SQL 查询语言在数据流和数据表上执行复杂的操作,适用于多种应用场景,如实时分析、数据流处理、机器学习等。下面是 Flink SQL 的一些重要概念和功能:


流与批统一的查询模式

Flink SQL 的一大特点是流处理和批处理的统一性。通过同一套 SQL 语法,用户可以同时处理静态数据(批处理)和动态数据(流处理)。这使得应用程序的开发更加简化,因为可以用相同的逻辑编写实时流数据处理和历史数据的查询。


动态表 (Dynamic Tables)

Flink SQL 通过动态表的概念将流数据建模为不断变化的表。这种动态表随着时间推移不断更新,数据的每个变化(插入、更新、删除)都会影响表的状态。通过动态表的概念,Flink 可以使用 SQL 查询连续的流数据,并在查询执行时获得不断更新的结果。


窗口操作 (Windowing)

在流式数据处理场景中,窗口操作非常重要。Flink SQL 提供了多种类型的窗口操作,包括:


滚动窗口 (Tumbling Window):将数据按照固定长度分割成不重叠的窗口。

滑动窗口 (Sliding Window):窗口之间存在重叠,数据可能被分配到多个窗口。

会话窗口 (Session Window):窗口由活动间隔定义,不同的事件可能会聚合在一个窗口中。

连接操作 (Joins)

Flink SQL 支持多种连接操作:


流与流的连接:允许用户将多个流结合在一起,基于时间或键进行匹配。

流与表的连接:将静态表与流数据进行匹配,从而使流式数据处理能够结合历史数据或参考数据。

时态表连接 (Temporal Table Join):用于将流数据与一个时态表进行连接,时态表会随着时间不断更新。

内置函数和自定义函数

Flink SQL 提供了丰富的内置函数,涵盖了字符串操作、数学运算、时间日期处理、聚合操作等。此外,Flink SQL 还支持用户自定义函数(UDF、UDTF、UDAF),用户可以根据具体需求扩展 SQL 的功能。


Table API 与 SQL API 的互操作性

Flink 提供了两种高级数据处理 API:


Table API:一种与关系代数类似的编程接口,支持链式调用,功能类似于 SQL。

SQL API:用户可以直接使用标准 SQL 语句进行数据处理。

Table API 和 SQL API 具有很高的互操作性,用户可以在同一个程序中混合使用这两者。例如,可以先用 Table API 进行表定义和部分操作,再通过 SQL 语句执行复杂的查询。


支持多种数据源和数据接收器

Flink SQL 支持连接多种数据源和数据接收器,如 Kafka、文件系统、数据库(如 MySQL、PostgreSQL)、Hive、HBase 等。通过 SQL 语法,用户可以轻松地将流数据写入这些外部系统,也可以从这些系统中读取数据进行处理。


状态管理与容错机制

Flink SQL 继承了 Flink 强大的状态管理和容错机制。在流处理任务中,Flink SQL 能够有效地处理有状态的计算,并保证在失败时自动恢复。基于 Flink 的检查点(Checkpointing)和保存点(Savepoint)机制,Flink SQL 提供了 Exactly-Once 的状态一致性保障。


实时分析与 ETL

Flink SQL 可以用于实时数据的分析与处理,常用于构建实时 ETL (Extract, Transform, Load) 流程。例如,用户可以通过 SQL 查询对从 Kafka、数据库等数据源接收到的流数据进行清洗、过滤、转换,并将结果写入到其他系统中(如 Elasticsearch、HDFS、JDBC)。


HelloWorld

添加依赖

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table</artifactId>
    <type>pom</type>
    <version>${flink.version}</version>
</dependency>

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-api-java-bridge_2.12</artifactId>
    <version>${flink.version}</version>
    <scope>provided</scope>
</dependency>

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-planner-blink_2.12</artifactId>
    <version>${flink.version}</version>
    <scope>provided</scope>
</dependency>

依赖说明:


flink-table-api-java-bridge_2.12:桥接器,主要负责 TableAPI 和 DataStream/DataSetAPI 的连接支持,按照语言分Java和Scala。

flink-table-planner-blink_2.12:计划期,是TableAPI最主要的部分,提供了运行时环境和生成程序执行计划的Planner。

如果是生产环境,则已经有 planner,就只需要有bridge就可以了

flink-table:基础依赖

编写代码

package icu.wzk;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

import static org.apache.flink.table.api.Expressions.$;


public class TableApiDemo {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tableEnvironment = StreamTableEnvironment.create(env);
        DataStreamSource<Tuple2<String, Integer>> data = env.addSource(new SourceFunction<Tuple2<String, Integer>>() {
            @Override
            public void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {
                while (true) {
                    ctx.collect(new Tuple2<>("name", 10));
                    Thread.sleep(1000);
                }
            }

            @Override
            public void cancel() {

            }
        });

        // =======================
        // Table 方式
        Table table = tableEnvironment.fromDataStream(data, $("name"), $("age"));
        // 对Table的数据查询
        Table name = table.select($("name"));
        // 将数据输出到控制台
        DataStream<Tuple2<Boolean, Row>> result = tableEnvironment.toRetractStream(name, Row.class);
        result.print();
        System.out.println("=========================");
        // =======================
        // SQL 方式
        tableEnvironment.createTemporaryView("users",data, $("name"), $("age"));
        String sql = "select name from users";
        table = tableEnvironment.sqlQuery(sql);
        result = tableEnvironment.toRetractStream(table, Row.class);
        result.print();
        System.out.println("=========================");
        env.execute("TableApiDemo");
    }

}

运行代码

控制台会一直不间断的输出如下的内容:

=========================
=========================
1> (true,name)
6> (true,name)
2> (true,name)
7> (true,name)
3> (true,name)
8> (true,name)
4> (true,name)
1> (true,name)
5> (true,name)
2> (true,name)
6> (true,name)
3> (true,name)

控制台的运行结果如下所示:

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
5月前
|
SQL 数据库 数据安全/隐私保护
数据库数据恢复——sql server数据库被加密的数据恢复案例
SQL server数据库数据故障: SQL server数据库被加密,无法使用。 数据库MDF、LDF、log日志文件名字被篡改。 数据库备份被加密,文件名字被篡改。
|
1月前
|
SQL 分布式计算 大数据
SparkSQL 入门指南:小白也能懂的大数据 SQL 处理神器
在大数据处理的领域,SparkSQL 是一种非常强大的工具,它可以让开发人员以 SQL 的方式处理和查询大规模数据集。SparkSQL 集成了 SQL 查询引擎和 Spark 的分布式计算引擎,使得我们可以在分布式环境下执行 SQL 查询,并能利用 Spark 的强大计算能力进行数据分析。
|
5月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
5月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
6月前
|
SQL 大数据 数据挖掘
玩转大数据:从零开始掌握SQL查询基础
玩转大数据:从零开始掌握SQL查询基础
258 35
|
6月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
探索Flink动态CEP:杭州银行的实战案例
202 5
|
7月前
|
SQL 数据库
数据库数据恢复—SQL Server报错“错误 823”的数据恢复案例
SQL Server数据库附加数据库过程中比较常见的报错是“错误 823”,附加数据库失败。 如果数据库有备份则只需还原备份即可。但是如果没有备份,备份时间太久,或者其他原因导致备份不可用,那么就需要通过专业手段对数据库进行数据恢复。
|
8月前
|
SQL 存储 大数据
Flink 基础详解:大数据处理的强大引擎
Apache Flink 是一个分布式流批一体化的开源平台,专为大规模数据处理设计。它支持实时流处理和批处理,具有高吞吐量、低延迟特性。Flink 提供统一的编程抽象,简化大数据应用开发,并在流处理方面表现卓越,广泛应用于实时监控、金融交易分析等场景。其架构包括 JobManager、TaskManager 和 Client,支持并行度、水位线、时间语义等基础属性。Flink 还提供了丰富的算子、状态管理和容错机制,如检查点和 Savepoint,确保作业的可靠性和一致性。此外,Flink 支持 SQL 查询和 CDC 功能,实现实时数据捕获与同步,广泛应用于数据仓库和实时数据分析领域。
4217 32
|
8月前
|
SQL 大数据 数据处理
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是为应对传统数据处理框架中流批分离的问题而诞生的,它融合了SQL的简洁性和Flink的强大流批处理能力,降低了大数据处理门槛。其核心工作原理包括生成逻辑执行计划、查询优化和构建算子树,确保高效执行。Flink SQL 支持过滤、投影、聚合、连接和窗口等常用算子,实现了流批一体处理,极大提高了开发效率和代码复用性。通过统一的API和语法,Flink SQL 能够灵活应对实时和离线数据分析场景,为企业提供强大的数据处理能力。
1586 27

热门文章

最新文章