算法笔记之动态规划(3)

简介: 最优三角剖分 与矩阵连乘的不同点 不同点就在于递归公式的不同,最优三角剖分的递归公式如下:当i=j的时候,mi=0;当i 图解示例 我们以一个凸多边形为例,其每条边的权重如下表所示 g[][] 0 1 2 3 4 5 0 0 2 3 1 5 6 1 2 0 3 4 8 6 2 3.

最优三角剖分

与矩阵连乘的不同点

不同点就在于递归公式的不同,最优三角剖分的递归公式如下:
当i=j的时候,mi=0;
当i

图解示例

我们以一个凸多边形为例,其每条边的权重如下表所示

g[][] 0 1 2 3 4 5
0 0 2 3 1 5 6
1 2 0 3 4 8 6
2 3 3 0 10 13 7
3 1 4 10 0 12 5
4 5 8 13 12 0 3
5 6 6 7 5 3 0

(1)初始化:令mi=0,si=0
(2)计算赋值如下:

| m[][] | 1 | 2 |3 |4 |5|
| ------ | ------ | ------ | ------ | ------ | ------ |
|1| 0 |8|22|40|54|
|2| | 0|17|41|52|
|3|| |0 |35|42|
|4| | | | 0|20|
|5| | | | |0|3

s[][] 1 2 3 4 5
1 0 1 2 3 3
2 0 2 3 3
3 0 3 3
4 0 4
5 0

所以最优权值为m1=54
(3)构造最优解。过程与矩阵快速相乘类似,都是根据s[][]对应的位置来分成子问题,所以首先是看到s1=3,所以分为了v0~ v3 和 v3~v5。

  • 因为v0~v3中有结点,所以子问题1不为空,输出该弦v0v3;同理,输出v3v5。
  • 对于子问题1进行递归,读取s1=2,因为v0~v2有结点,所以输出v0v2……
  • 最后输出的最优解为v0v3,v3v5,v0v2。

代码实现

void  Convexpolygontriangulation()
{
    for(int i = 1 ;i <= n ; i++)    // 初始化
    {
        m[i][i] = 0 ;
        s[i][i] = 0 ;
    }
    for(int d = 2 ;d <= n ; d++)         // 枚举点的个数
      for(int i = 1 ;i <= n - d + 1 ; i++)  // 枚举起始点
      {
          int j = i + d - 1 ;         // 终点
          m[i][j] = m[i+1][j] + g[i-1][i] + g[i][j] + g[i-1][j] ;
          s[i][j] = i ;
          for(int k = i + 1 ;k < j ; k++)     // 枚举中间点
          {
              double temp = m[i][k] + m[k+1][j] + g[i-1][k] + g[k][j] + g[i-1][j] ;
              if(m[i][j] > temp)
              {
                  m[i][j] = temp ;   // 更新最优值
                  s[i][j] = k ;      // 记录中间点
              }
          }
      }
}
void print(int i , int j)  // 输出所有的弦
{
    if(i == j)  return ;
    if(s[i][j]>i)
      cout<<"{v"<<i-1<<"v"<<s[i][j]<<"}"<<endl;
    if(j>s[i][j]+1)
      cout<<"{v"<<s[i][j]<<"v"<<j<<"}"<<endl;
    print(i ,s[i][j]);
    print(s[i][j]+1 ,j);
    //cout<<"{ v"<<i-1<<" , v"<<s[i][j]<<" , v"<<j<<" }"<<endl; //输出所有剖分后的三角形
}

石子合并

递归公式:

设Mini代表从第i堆石子到第j堆石子合并的最小花费,Mini代表从第i堆石子到底k堆石子合并的最小花费,Mink+1代表从第k+1堆石子到第j堆石子合并的最小花费。那么递推式如下:
Mini=0,i=j
Mini=min{mi+mk+1+w(i,j)} i同理,设Maxi代表从第i堆石子到第j堆石子合并的最大花费,Maxi代表从第i堆石子到底k堆石子合并的最大花费,Maxk+1代表从第k+1堆石子到第j堆石子合并的最大花费。那么递推式如下:
Maxi=0,i=j
Maxi=max{mi+mk+1+w(i,j)} i

代码实现

void straight(int a[],int n)
{
    for(int i=1;i<=n;i++)  // 初始化
        Min[i][i]=0, Max[i][i]=0;
    sum[0]=0;
    for(int i=1;i<=n;i++)
       sum[i]=sum[i-1]+a[i];
    for(int v=2; v<=n; v++) // 枚举合并的堆数规模
    {
        for(int i=1; i<=n-v+1; i++) //枚举起始点i
        {
            int j = i + v-1; //枚举终点j
            Min[i][j] = INF; //初始化为最大值
            Max[i][j] = -1; //初始化为-1
            int tmp = sum[j]-sum[i-1];//记录i...j之间的石子数之和
            for(int k=i; k<j; k++) {   //枚举中间分隔点
                Min[i][j] = min(Min[i][j], Min[i][k] + Min[k+1][j] + tmp);
                Max[i][j] = max(Max[i][j], Max[i][k] + Max[k+1][j] + tmp);
            }
        }
    }
}
void Circular(int a[],int n)
{
    for(int i=1;i<=n-1;i++)
        a[n+i]=a[i];
    n=2*n-1;
    straight(a, n);
    n=(n+1)/2;
    min_Circular=Min[1][n];
    max_Circular=Max[1][n];
    for(int i=2;i<=n;i++)
    {
        if(Min[i][n+i-1]<min_Circular)
           min_Circular=Min[i][n+i-1];
        if(Max[i][n+i-1]>max_Circular)
           max_Circular=Max[i][n+i-1];
    }
}

时间复杂度为O(n3)

改进算法

最小值可以用四边形不等式来优化。
复杂度为O(n2)

void get_Min(int n)
{
    for(int v=2; v<=n; v++) // 枚举合并的堆数规模
    {
        for(int i=1; i<=n-v+1; i++) //枚举起始点i
        {
            int j = i + v-1; //枚举终点j
            int tmp = sum[j]-sum[i-1];//记录i...j之间的石子数之和
            int i1=s[i][j-1]>i?s[i][j-1]:i;
            int j1=s[i+1][j]<j?s[i+1][j]:j;
            Min[i][j]=Min[i][i1]+Min[i1+1][j];
            s[i][j]=i1;
            for(int k=i1+1; k<=j1; k++) //枚举中间分隔点
                if(Min[i][k]+ Min[k+1][j]<Min[i][j])
                {
                    Min[i][j]=Min[i][k]+Min[k+1][j];
                    s[i][j]=k;
                }
            Min[i][j]+=tmp;
        }
    }
}

void get_Max(int n)
{
    for(int v=2; v<=n; v++) // 枚举合并的堆数规模
    {
        for(int i=1; i<=n-v+1; i++) //枚举起始点i
        {
            int j = i + v-1; //枚举终点j
            Max[i][j] = -1; //初始化为-1
            int tmp = sum[j]-sum[i-1];//记录i...j之间的石子数之和
            if(Max[i+1][j]>Max[i][j-1])
               Max[i][j]=Max[i+1][j]+tmp;
            else
               Max[i][j]=Max[i][j-1]+tmp;
        }
    }
}

void straight(int a[],int n)
{
    for(int i=1;i<=n;i++)  // 初始化
        Min[i][i]=0, Max[i][i]=0, s[i][i]=0;
    sum[0]=0;
    for(int i=1;i<=n;i++)
       sum[i]=sum[i-1]+a[i];
    get_Min(n);
    get_Max(n);
}
void Circular(int a[],int n)
{
    for(int i=1;i<=n-1;i++)
        a[n+i]=a[i];
    n=2*n-1;
    straight(a, n);
    n=(n+1)/2;
    min_Circular=Min[1][n];
    max_Circular=Max[1][n];
    for(int i=2;i<=n;i++)
    {
        if(Min[i][n+i-1]<min_Circular)
           min_Circular=Min[i][n+i-1];
        if(Max[i][n+i-1]>max_Circular)
           max_Circular=Max[i][n+i-1];
    }
}
相关文章
|
2月前
|
算法 索引
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
53 0
|
2月前
|
算法
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
54 0
|
1月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
56 2
|
2月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
109 2
动态规划算法学习三:0-1背包问题
|
2月前
|
算法 API 计算机视觉
人脸识别笔记(一):通过yuface调包(参数量54K更快更小更准的算法) 来实现人脸识别
本文介绍了YuNet系列人脸检测算法的优化和使用,包括YuNet-s和YuNet-n,以及通过yuface库和onnx在不同场景下实现人脸检测的方法。
83 1
|
2月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
81 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
2月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
186 0
动态规划算法学习二:最长公共子序列
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
80 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-160、相交链表)
❤️算法笔记❤️-(每日一刷-160、相交链表)
19 1
|
2月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
181 0

热门文章

最新文章