【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题

简介: 本文介绍了经典的0/1背包问题及其动态规划解法。

 目录

背包问题简介

问题描述

输入:

输出:

动态规划解法

动态规划状态转移

代码实现

代码解释

动态规划的时间复杂度

例子解析

输出:

总结


作者我蓝桥杯:2023第十四届蓝桥杯国赛C/C++大学B组一等奖,所以请听我讲:

image.gif 编辑

蓝桥杯是一项备受推崇的编程比赛,参赛者需要通过高效的算法解决各种具有挑战性的问题。今天,我们将深入探讨蓝桥杯经典算法题目之一——0/1背包问题。通过这个题目,我们不仅可以学习如何高效使用动态规划,还能够更好地掌握如何在实际问题中应用算法思想。

背包问题简介

🍎背包问题的核心思想是:给定一组物品,每个物品有一个重量和一个价值,现在有一个背包,背包的容量有限,问如何选择物品放入背包,使得在不超过背包容量的情况下,物品的总价值最大。🍊

应该也很要理解,就是这么个道理:

🍏在0/1背包问题中,每个物品只能选择放入背包一次,要么放入背包,要么不放入。🍏

image.gif 编辑

image.gif 编辑

问题描述

那我们假设我们有一个背包,他的容量为C,有n个物品。其中每个物品有一个重量wi和一个价值vi。我们需要在这些物品中选择若干个物品放入背包,使得背包中物品的总价值最大,并且物品的总重量不超过背包的容量。就是这个问题。

输入:

  • 第1行:nC,表示物品的数量和背包的容量。
  • 第2至n+1行:每行包含两个整数wivi,分别表示第i个物品的重量和价值。

输出:

  • 输出一个整数,表示在不超过背包容量的前提下,能够获得的最大价值。

动态规划解法

是一种通过将复杂问题分解成子问题来求解的方法。在背包问题中,我们可以定义一个二维数组dp[i][j],表示前i个物品中能够在容量为j的背包中获得的最大价值。

image.gif 编辑

动态规划状态转移

  • 如果第i个物品不放入背包,那么dp[i][j] = dp[i-1][j],即最大价值与不放入这个物品时的最大价值相同。🥞🥞🥞🥞
  • 如果第i个物品放入背包,那么dp[i][j] = dp[i-1][j-wi] + vi,即最大价值为放入该物品后,剩余容量所能获得的最大价值。🍔🍔🍔🍔🍔

最终,我们要求解的是dp[n][C],即在n个物品和背包容量C下,能够获得的最大价值。

代码实现

import java.util.Scanner;
public class Knapsack {
    
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        // 输入物品数量和背包容量
        int n = sc.nextInt();
        int C = sc.nextInt();
        
        // 定义物品的重量和价值
        int[] weight = new int[n + 1];
        int[] value = new int[n + 1];
        
        // 输入每个物品的重量和价值
        for (int i = 1; i <= n; i++) {
            weight[i] = sc.nextInt();
            value[i] = sc.nextInt();
        }
        // dp数组,dp[i][j]表示前i个物品,背包容量为j时的最大价值
        int[][] dp = new int[n + 1][C + 1];
        
        // 动态规划求解
        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= C; j++) {
                if (j >= weight[i]) {
                    // 如果当前物品可以放入背包,则选择放与不放的最大值
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
                } else {
                    // 当前物品不能放入背包时,最大价值与不放当前物品时相同
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        // 输出最大价值
        System.out.println(dp[n][C]);
        sc.close();
    }
}

image.gif

代码解释

  1. 输入处理:首先通过Scanner读取物品数量n和背包容量C,然后通过循环输入每个物品的重量和价值。
  2. DP数组:使用一个二维数组dp[i][j]表示在前i个物品和容量为j的背包中能获得的最大价值。
  3. 状态转移:遍历每个物品,对于每种可能的背包容量j,根据是否将当前物品放入背包,更新dp[i][j]
  4. 输出:最后输出dp[n][C],即在所有物品和背包容量下能够获得的最大价值。

都挺难的,大家好好消化吧,到时候更新更加详细的教程,方便大家理解。

动态规划的时间复杂度

该算法的时间复杂度是O(n * C),其中n是物品的数量,C是背包的容量。空间复杂度也是O(n * C),主要由dp数组占据。

例子解析

假设有如下输入:

4 5 2 3 3 4 4 5 5 6

这意味着有4个物品,背包容量为5,物品的重量和价值分别为:

物品 重量 价值
1 2 3
2 3 4
3 4 5
4 5 6

使用动态规划的算法,我们可以求得最大价值为7,即选择物品1(重量2,价值3)和物品2(重量3,价值4)放入背包中,背包容量为5,总价值为7。

输出:

7

image.gif 编辑

image.gif 编辑


相关文章
|
4月前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
626 35
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
5月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
664 1
|
5月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
402 1
贪心算法:部分背包问题深度解析
|
6月前
|
运维 监控 算法
基于 Java 滑动窗口算法的局域网内部监控软件流量异常检测技术研究
本文探讨了滑动窗口算法在局域网流量监控中的应用,分析其在实时性、资源控制和多维分析等方面的优势,并提出优化策略,结合Java编程实现高效流量异常检测。
274 0
|
7月前
|
机器学习/深度学习 算法 Java
Java实现林火蔓延路径算法
记录正在进行的森林防火项目中林火蔓延功能,本篇文章可以较好的实现森林防火蔓延,但还存在很多不足,如:很多参数只能使用默认值,所以蔓延范围仅供参考。(如果底层设备获取的数据充足,那当我没说)。注:因林火蔓延涉及因素太多,如静可燃物载量、矿质阻尼系数等存在估值,所以得出的结果仅供参考。
151 4
|
7月前
|
存储 监控 算法
企业上网监控场景下布隆过滤器的 Java 算法构建及其性能优化研究
布隆过滤器是一种高效的数据结构,广泛应用于企业上网监控系统中,用于快速判断员工访问的网址是否为违规站点。相比传统哈希表,它具有更低的内存占用和更快的查询速度,支持实时拦截、动态更新和资源压缩,有效提升系统性能并降低成本。
268 0
|
7月前
|
存储 负载均衡 算法
我们来说一说 Java 的一致性 Hash 算法
我是小假 期待与你的下一次相遇 ~
261 1
|
8月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
541 58