2019年20个最佳Python人工智能和机器学习开源工具(项目)

简介: 参考资料讨论钉钉群 21745728本文最新版本地址本文涉及的python测试开发库 谢谢点赞!本文相关海量书籍下载2018最佳人工智能机器学习工具书及下载(持续更新)TensorFlow最初是由研究人员和工程师在Google机器智能研究组织的Google Brain团队中开发的。

图片.png

参考资料

Github URL: Tensorflow

图片.png

  • Scikit-learn
    是用于数据挖掘和数据分析的简单而有效的工具,可供所有人访问,并可在各种环境中重用,基于NumPy,SciPy和matplotlib,开源,商业可用 - BSD许可证。

Github URL: Scikit-learn

图片.png

  • Keras:高级神经网络API,用Python编写,能够在TensorFlow,CNTK或Theano之上运行。

Github URL: Keras

  • PyTorch张量和动态神经网络,具有强大的GPU加速功能。

Github URL: pytorch

  • Theano允许您有效地定义,优化和评估涉及多维阵列的数学表达式。

Github URL: Theano

  • Gensim 具有可扩展的统计语义,分析语义结构的纯文本文档,检索语义相似的文档等功能。

Github URL: Gensim

-Caffe以表达,速度和模块化为基础的深度学习框架。 它由伯克利视觉和学习中心(BVLC)和社区贡献者开发。

Github URL: Caffe

  • Chainer:基于Python的独立开源框架,适用于深度学习模型。 Chainer提供灵活,直观和高性能的方法来实现全方位的深度学习模型,包括最新的模型,如递归神经网络和变分自动编码器。

Github URL: Chainer

  • Statsmodels: 允许用户浏览数据,估计统计模型和执行统计测试。 描述性统计,统计测试,绘图函数和结果统计的广泛列表可用于不同类型的数据和每个估算器。

Github URL: Statsmodels

  • Shogun是机器学习工具箱,提供各种统一和高效的机器学习(ML)方法。 工具箱无缝地允许轻松组合多个数据表示,算法类和通用工具。

Github URL: Shogun

  • Pylearn2机器学习库。 它的大部分功能都建立在Theano之上。 这意味着您可以使用数学表达式编写Pylearn2插件(新模型,算法等),Theano将为您优化和稳定这些表达式,并将它们编译为您选择的后端(CPU或GPU)。

Github URL: Pylearn2

  • NuPIC是一个基于新皮层理论的开源项目,称为分层时间记忆(HTM)。 HTM理论的一部分已经在应用中得到实施,测试和使用,HTM理论的其他部分仍在开发中。

Github URL: NuPIC

  • Nilearn:基于Python的深度学习库。 它提供易用性,同时提供最高性能。

Github URL: Nilearn

  • Orange3:Python工具箱进行多变量统计,并使用预测建模,分类,解码或连接分析等应用程序。

Github URL: Orange3

  • Pymc: 实现贝叶斯统计模型和拟合算法,包括马尔可夫链蒙特卡罗。 其灵活性和可扩展性使其适用于大量问题。

Github URL: Pymc

-Deap: 一种新颖的进化计算框架,用于快速原型设计和思想测试。 它旨在使算法明确,数据结构透明。 它与多处理和SCOOP等并行机制完美协调。

Github URL: Deap

  • Annoy (Approximate Nearest Neighbors Oh Yeah)是一个带有Python绑定的C ++库,用于搜索空间中接近给定查询点的点。 它还创建了大型只读基于文件的数据结构,这些数据结构映射到内存中,以便许多进程可以共享相同的数据。

Github URL: Annoy

  • PyBrain是一个用于Python的模块化机器学习库。 其目标是为机器学习任务和各种预定义环境提供灵活,易用且功能强大的算法,以测试和比较您的算法。

Github URL: PyBrain

  • Fuel是一个数据管道框架,可为您的机器学习模型提供所需的数据。 它计划由 BlocksPylearn2神经网络库使用。

Github URL: Fuel

相关文章
|
2月前
|
异构计算 Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
254 1
|
2月前
|
API 语音技术 开发者
Python 项目打包,并上传到 PyPI,分享项目
本文介绍了如何使用 Poetry 打包并发布一个 Python 项目至 PyPI。内容包括:项目创建、配置 `pyproject.toml` 文件、构建软件包、上传至 PyPI、安装与使用。通过实例 iGTTS 展示了从开发到发布的完整流程,帮助开发者快速分享自己的 Python 工具。
|
4月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
523 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
6月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
2月前
|
人工智能 Shell Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
175 0
|
5月前
|
监控 大数据 API
Python 技术员实践指南:从项目落地到技术优化
本内容涵盖Python开发的实战项目、技术攻关与工程化实践,包括自动化脚本(日志分析系统)和Web后端(轻量化API服务)两大项目类型。通过使用正则表达式、Flask框架等技术,解决日志分析效率低与API服务性能优化等问题。同时深入探讨内存泄漏排查、CPU瓶颈优化,并提供团队协作规范与代码审查流程。延伸至AI、大数据及DevOps领域,如商品推荐系统、PySpark数据处理和Airflow任务编排,助力开发者全面提升从编码到架构的能力,积累高并发与大数据场景下的实战经验。
Python 技术员实践指南:从项目落地到技术优化
|
4月前
|
机器学习/深度学习 人工智能 运维
阿里云PAI人工智能平台介绍、优势及收费标准,手动整理
阿里云人工智能平台PAI是面向开发者和企业的机器学习与深度学习工程平台,提供数据标注、模型构建、训练、部署及推理优化等全链路服务。内置140+优化算法,支持PyTorch、TensorFlow等多种框架,具备高性能训练与推理能力,适用于自动驾驶、金融风控、智能推荐、智慧医疗等多个行业场景。PAI提供零代码开发、可视化建模、大模型一键部署等功能,助力企业快速构建AI应用。支持多种购买方式,如按量付费、预付费等,满足不同业务需求。
|
6月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
937 12
Scikit-learn:Python机器学习的瑞士军刀
|
5月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。

推荐镜像

更多