PySpark安装+Jupyter Notebook配置(Ubuntu 18.06)

简介: 学校一门Big Data Computing需要学习Spark in Python。这篇文章记录一下安装PySpark和Jupyter Notebook上运行Spark的步骤。

学校一门Big Data Computing需要学习Spark in Python。
这篇文章记录一下安装PySpark和Jupyter Notebook上运行Spark的步骤。


Prerequisite

我的系统是:Ubuntu 18.06 LTS

  1. 已经装好了python2和3(如果没有可以看看这个链接)
  2. 装好了jupyter notebook,没有的话自行google吧
  3. 装了Java 8或更高版本的Java(没有,也可以看看这个链接)

PySpark Installation Steps

1.去Spark downloads page.选择最新的Spark Release包(a prebuilt package for Hadoop), 然后直接下载。我现在的版本是Spark 2.3.1 (Jun 08 2018)。

  1. 去到下载文件夹,将文件移到home目录下并解压
$ cd Downloads
$ mv spark-2.3.1-bin-hadoop2.7.tgz ~/
$ tar -zxf spark-2.3.1-bin-hadoop2.7.tgz

3.声明一下环境变量

$ sudo vim ~/.bashrc

在文件尾部添加

export SPARK_HOME=/home/usrname/spark-2.3.1-bin-hadoop2.7
export PATH=$PATH:/home/username/spark-2.3.1-bin-hadoop2.7/bin
export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.4-src.zip:$PYTHONPATH
export PATH=$SPARK_HOME/python:$PATH

重新运行一下刚刚修改的初始化文件

$ source ~/.bashrc

安装成功的话,输入pyspark

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 2.3.1
      /_/

Using Python version 2.7.15rc1 (default, Apr 15 2018 21:51:34)
SparkSession available as 'spark'.

我看到StackOverflow上面说,现在也可以直接运行pip install pystark来安装,但是貌似没有特别好去配置你的环境变量.我的同学是用PyPI方法装的,现在开学第一周,也没瞧出什么区别,问了TA跟我说只要不影响你写project,什么安装方法都行。(吐槽一下:这什么鬼回答....)


PySpark in Jupyter

在Jupyter Notebook里运行PySpark有两种方法:

  1. 配置PySpark driver,当运行pyspark命令就直接自动打开一个Jupyter Notebook
  2. 正常启动Jupyter Notebook,然后用findSpark的package(我选了这种)

方法一:配置PySpark driver

~/.bashrc文件最后,添加配置PySpark driver的环境变量

export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS='notebook'

同样,运行一下刚刚修改的初始化文件

$ source ~/.bashrc

最后,重启terminal

$ pyspark

这个时候,就会自动打开Jupyter Notebook。

方法二:用findSpark包

安装findspark:

$ pip install findspark

启动jupyter notebook

$ jupyter notebook

Jupyter Notebook运行效果

附上代码,大家运行感受一下:

#方法2需要复制这三行
import findspark
findspark.init()
import pyspark

#方法1直接从这里开始复制
import random
sc = pyspark.SparkContext(appName="Pi")
num_samples = 100000000
def inside(p):     
  x, y = random.random(), random.random()
  return x*x + y*y < 1
count = sc.parallelize(range(0, num_samples)).filter(inside).count()
pi = 4 * count / num_samples
print(pi)
sc.stop()

Output:


img_1e714c182c488784193037d1ba9ad37c.png

实测,Python3的运行速度会比Python2的快很多,我不知道为什么我们TA跟我说用“Python 2 is better。”


常见问题(不断更新)

1.Python使用spark时出現版本不同的错误

import os
#for python 3
os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"
#for python 2
os.environ["PYSPARK_PYTHON"]="/usr/bin/python"

我的电脑上的python的路径是/usr/bin/python,你可以运行where pythoncheck一下你的Python2的安装路径


参考链接

Get Started with PySpark and Jupyter Notebook in 3 Minutes

目录
相关文章
|
8天前
|
Ubuntu Shell 开发工具
ubuntu/debian shell 脚本自动配置 gitea git 仓库
这是一个自动配置 Gitea Git 仓库的 Shell 脚本,支持 Ubuntu 20+ 和 Debian 12+ 系统。脚本会创建必要的目录、下载并安装 Gitea,创建 Gitea 用户和服务,确保 Gitea 在系统启动时自动运行。用户可以选择从官方或小绿叶技术博客下载安装包。
22 2
|
1月前
|
网络协议 Ubuntu 网络安全
|
1月前
|
消息中间件 监控 Ubuntu
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
72 3
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
|
1月前
|
资源调度
Ubuntu22.04静态ip配置+yarn build后显示内存超限,变异失败
Ubuntu22.04静态ip配置+yarn build后显示内存超限,变异失败
37 2
Ubuntu22.04静态ip配置+yarn build后显示内存超限,变异失败
|
1月前
|
Ubuntu Linux 编译器
Linux/Ubuntu下使用VS Code配置C/C++项目环境调用OpenCV
通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。
261 3
|
1月前
|
JavaScript iOS开发 MacOS
Jupyter模块Plotly及labextension插件的安装
Jupyter模块Plotly及labextension插件的安装
|
2月前
|
存储 Prometheus 监控
在Ubuntu系统上安装与配置Prometheus的步骤
通过以上步骤,您应该已经成功在Ubuntu系统上安装并配置了Prometheus。您现在可以开始使用Prometheus收集和分析您的系统和应用程序的指标数据了。
166 1
|
1月前
|
Ubuntu 网络协议 Linux
liunx各大发行版(centos,rocky,ubuntu,国产麒麟kylinos)网卡配置和包管理方面的区别
liunx各大发行版(centos,rocky,ubuntu,国产麒麟kylinos)网卡配置和包管理方面的区别
108 0
|
2月前
|
Ubuntu Oracle 关系型数据库
Oracle VM VirtualBox之Ubuntu 22.04LTS双网卡网络模式配置
这篇文章是关于如何在Oracle VM VirtualBox中配置Ubuntu 22.04LTS虚拟机双网卡网络模式的详细指南,包括VirtualBox网络概述、双网卡网络模式的配置步骤以及Ubuntu系统网络配置。
234 3
|
2月前
|
Ubuntu 开发工具 虚拟化
MacOS系统基于VMware Fusion配置Ubuntu 22.04LTS环境
这篇文章介绍了如何在MacOS系统上使用VMware Fusion虚拟化软件配置Ubuntu 22.04 LTS环境,包括自定义VMware Fusion网段、Ubuntu系统安装、配置root用户登录、设置静态IP地址、修改默认网卡名称、配置PS1变量、设置登录界面为字符界面、修改软件源和进行vim基础优化等步骤。
329 2