Hanlp自然语言处理工具的使用演练

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: Hanlp是由一系列模型与算法组成的工具包,目标是普及自然语言处理在生产环境中的应用。Hanlp具备功能完善、性能高效、架构清洗、语料时新、可自定义的特点;提供词法分析(中文分词、磁性标注、命名实体识别)、句法分析、文本分类和情感分析等功能。

Hanlp是由一系列模型与算法组成的工具包,目标是普及自然语言处理在生产环境中的应用。Hanlp具备功能完善、性能高效、架构清洗、语料时新、可自定义的特点;提供词法分析(中文分词、磁性标注、命名实体识别)、句法分析、文本分类和情感分析等功能。
本篇将用户输入的语句根据词库进行分词、关键词提取、摘要提取、词库维护。

工具类名称:DKNLPBase

1、标准分词
方法签名:List StandardTokenizer.segment(String txt);
返回:分词列表。
签名参数说明:txt:要分词的语句。
范例:下例验证一段话第5个分词是阿法狗。
程序清单1

public void testSegment() throws Exception

{
    String text = "商品和服务";
    List<Term> termList = DKNLPBase.segment(text);
    assertEquals("商品", termList.get(0).word);
    assertEquals("和", termList.get(1).word);
    assertEquals("服务", termList.get(2).word);
    text = "柯杰解说“李世石VS阿法狗第二局” 结局竟是这样";
    termList = DKNLPBase.segment(text);
    assertEquals("阿法狗", termList.get(5).word);  // 能够识别"阿法狗"

}

2、关键词提取
方法签名:List extractKeyword(String txt,int keySum);
返回:关键词列表.
签名参数说明:txt:要提取关键词的语句,keySum要提取关键词的数量
范例:给出一段话提取一个关键词是“程序员”。
程序清单2

public void testExtractKeyword() throws Exception

{
    String content = "程序员(英文Programmer)是从事程序开发、维护的专业人员。" +
            "一般将程序员分为程序设计人员和程序编码人员," +
            "但两者的界限并不非常清楚,特别是在中国。" +
            "软件从业人员分为初级程序员、高级程序员、系统" +
            "分析员和项目经理四大类。";
    List<String> keyword = DKNLPBase.extractKeyword(content, 1);
    assertEquals(1, keyword.size());
    assertEquals("程序员", keyword.get(0));
}

3、短语提取
方法签名:List extractPhrase(String txt, int phSum);
返回:短语
签名参数说明:txt:要提取短语的语句,phSum短语数量
范例:给出一段文字,能代表文章的五个短语,第一个短语是算法工程师。
程序清单3

public void testExtractPhrase() throws Exception

{
    String text = "算法工程师\n" +
            "算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。" +
            "如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、" +
            "空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法工程师就是利用算法处理事物的人。\n" +
            "\n" +
            "1职位简介\n" +
            "算法工程师是一个非常高端的职位;\n" +
            "专业要求:计算机、电子、通信、数学等相关专业;\n" +
            "学历要求:本科及其以上的学历,大多数是硕士学历及其以上;\n" +
            "语言要求:英语要求是熟练,基本上能阅读国外专业书刊;\n" +
            "必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。\n" +
            "\n" +
            "2研究方向\n" +
            "视频算法工程师、图像处理算法工程师、音频算法工程师 通信基带算法工程师\n" +
            "\n" +
            "3目前国内外状况\n" +
            "目前国内从事算法研究的工程师不少,但是高级算法工程师却很少,是一个非常紧缺的专业工程师。" +
            "算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、" +
            "雷达信号处理、生物医学信号处理等领域的一维信息算法处理。\n" +
            "在计算机音视频和图形图像技术等二维信息算法处理方面目前比较先进的视频处理算法:机器视觉成为此类算法研究的核心;" +
            "另外还有2D转3D算法(2D-to-3D conversion),去隔行算法(de-interlacing),运动估计运动补偿算法" +
            "(Motion estimation/Motion Compensation),去噪算法(Noise Reduction),缩放算法(scaling)," +
            "锐化处理算法(Sharpness),超分辨率算法(Super Resolution),手势识别(gesture recognition),人脸识别(face recognition)。\n" +
            "在通信物理层等一维信息领域目前常用的算法:无线领域的RRM、RTT,传送领域的调制解调、信道均衡、信号检测、网络优化、信号分解等。\n" +
            "另外数据挖掘、互联网搜索算法也成为当今的热门方向。\n" +
            "算法工程师逐渐往人工智能方向发展。";
    List<String> phraseList = DKNLPBase.extractPhrase(text, 5);
    assertEquals(5, phraseList.size());
    assertEquals("算法工程师", phraseList.get(0));
}

4、自动摘要
方法签名:List extractSummary(String txt, int sSum);
返回:摘要语句
签名参数说明:txt:要提取摘要的语句,sSum摘要句子数量
范例:自动提取三句摘要句子。
程序清单4

public void testExtractSummary() throws Exception

{
    String document = "算法可大致分为基本算法、数据结构的算法、数论算法、计算几何的算法、图的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法、厄米变形模型、随机森林算法。\n" +
            "算法可以宽泛的分为三类,\n" +
            "一,有限的确定性算法,这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。\n" +
            "二,有限的非确定算法,这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。\n" +
            "三,无限的算法,是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。";
    List<String> sentenceList = DKNLPBase.extractSummary(document, 3);
    assertEquals(3, sentenceList.size());

}

5、拼音转换
方法签名:List convertToPinyinList(txt);
返回:拼音列表
签名参数说明:txt:要转换拼音的语句
范例:给出一段文字中第二个字的拼音。
程序清单5

public void testConvertToPinyinList() throws Exception

{
    String text = "鸭绿江的绿跟绿色的绿不是一个读音";
    List<Pinyin> pinyinList = DKNLPBase.convertToPinyinList(text);
    assertEquals(text.length(), pinyinList.size());
    assertEquals(Pinyin.lu4, pinyinList.get(1));

}

6、添加词库
方法签名:String addCK(String filePath);
返回:空—完成,其它—错误信息
签名参数说明:filePath:新的词库文件,每个词使用回车换行分隔。
范例:读取新词库文件,将文件内容中第7个词“新美“添加到词库。
程序清单6

public void testAddCK() throws Exception

{
    DKNLPBase.addCK("src/test/resources/custom_dictionary.txt");
    String text = "互联网家装质量问题频繁 新美大杀入胜算几何";
    List<Term> termList = DKNLPBase.segment(text);
    assertEquals("新美", termList.get(6).word);

}

7、新词发现
方法签名:
NewWordDiscover discover = new NewWordDiscover(max_word_len, min_freq, min_entropy, min_aggregation, filter);
discover.discovery(text, size);
返回:空—完成,其它—错误信息
签名参数说明:max_word_len: 控制识别结果中最长的词语长度,默认值是 4;该值越大,运算量越大,结果中出现短语的数量也会越多。
min_freq: 控制结果中词语的最低频率,低于该频率的将会被过滤掉,减少一 些运算量。由于结果是按照频率排序的,所以该参数其实意义不大。实际上,在接口中直接设为了0,意思是所有候选词都会出来。
min_entropy: 控制结果中词语的最低信息熵(信息的不确定度)的值,一般取 0.5 左右。该值越 大,越短的词语就越容易被提取出来。
min_aggregation: 控制结果中词语的最低互信息值(字和字之间的关联性),一般取 50 到 200.该值 越大,越长的词语就越容易被提取出来,有时候会出现一些短语。
Filter: 设为 true 的时候将使用内部词库过滤掉“旧词”。
Text:用于新词发现的文档。
Size:新词个数。
范例:新词发现。
程序清7

public void testFindNewWord() {

    NewWordDiscover discover = new NewWordDiscover(4, 0.0f, 0.5f, 100f, true);

//读取文件夹下所以文档并合并成一篇文档用于新词发现

    StringBuilder sbText = new StringBuilder();
    File[] txtFiles = new File("src/test/resources/搜狗文本分类语料库微型版/健康").listFiles();
    int i = 0;
    for (File file : txtFiles)
    {
        System.out.printf("[%d / %d] 读取 %s 中...\n", ++i, txtFiles.length, file.getName());
        sbText.append(IOUtil.readTxt(file.getPath()));
        if (i == 100) break;
    }
    System.out.printf("对长度为%d的语料进行分析中...\n", sbText.length());
    List<WordInfo> wordInfoList = discover.discovery(sbText.toString(), 10);
    //打印出发现的新词
    for (WordInfo wordInfo : wordInfoList) {
        System.out.println(wordInfo.text);
    }
}
相关文章
|
自然语言处理 算法 Java
NLP快速入门:手把手教你用HanLP做中文分词
NLP快速入门:手把手教你用HanLP做中文分词
1100 0
NLP快速入门:手把手教你用HanLP做中文分词
|
自然语言处理
自然语言处理hanlp------3java调用hanlp
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
自然语言处理hanlp------3java调用hanlp
|
自然语言处理
自然语言处理工具HanLP-基于层叠HMM地名识别
本篇接上一篇内容《HanLP-基于HMM-Viterbi的人名识别原理介绍》介绍一下层叠隐马的原理。首先说一下上一篇介绍的人名识别效果对比: 只有Jieba识别出的人名准确率极低,基本为地名或复杂地名组成部分或复杂机构名组成部分。
1267 0
|
自然语言处理 Python Java
自然语言处理工具python调用hanlp的方法步骤
Python调用hanlp的方法此前有分享过,本篇文章分享自“逍遥自在017”的博客,个别处有修改,阅读时请注意!1.首先安装jpype首先各种坑,jdk和python 版本位数必须一致,我用的是JPype1-py3 版本号0.5.5.2 、1.6jdk和Python3.5,win7 64位下亲测没问题。
1181 0
|
自然语言处理 Docker 容器
HanLP 自然语言处理 for nodejs
·支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义词典、词性标注),命名实体识别(中国人名、音译人名、日本人名、地名、实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析(MaxEnt依存句法分析、CRF依存句法分析)
1586 0
|
自然语言处理 Windows
Hanlp自然语言处理工具之词法分析器
本章是接前两篇《分词工具Hanlp基于感知机的中文分词框架》和《基于结构化感知机的词性标注与命名实体识别框架》的。本系统将同时进行中文分词、词性标注与命名实体识别3个任务的子系统称为“词法分析器”。
2527 0
|
缓存 自然语言处理
Hanlp自然语言处理中的词典格式说明
使用过hanlp的都知道hanlp中有许多词典,它们的格式都是非常相似的,形式都是文本文档,随时可以修改。本篇文章详细介绍了hanlp中的词典格式,以满足用户自定义的需要。
4861 0
|
自然语言处理 Java 开发工具
如何编译运行HanLP自然语言处理包
master分支 对于master分支,编译方法如下: git clone  https://github.com/hankcs/HanLP.git mvn install -DskipTests   ·由于目前一些test不够规范,使用了硬编码路径下的资源,所以暂时跳过单元测试。
1357 0
|
自然语言处理 算法 C++
开源自然语言处理工具包hanlp中CRF分词实现详解
 CRF简介 CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗标记偏置的问题。 [gerative-discriminative.png]  CRF训练 这类耗时的任务,还是交给了用C++实现的CRF++。
1906 0
|
自然语言处理 算法 程序员
自然语言处理工具hanlp关键词提取图解TextRank算法
TextRank是在Google的PageRank算法启发下,针对文本里的句子设计的权重算法,目标是自动摘要。它利用投票的原理,让每一个单词给它的邻居(术语称窗口)投赞成票,票的权重取决于自己的票数。这是一个“先有鸡还是先有蛋”的悖论,PageRank采用矩阵迭代收敛的方式解决了这个悖论。
1616 0
下一篇
DataWorks