为了理解自然语言,聊天机器人还要走很多“歪路”

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介:

为理解自然语言,唯有慢慢的填坑。

上周,以先进的机器学习和自然语言处理技术见长的聊天机器人初创公司Talla推出了一款HR机器人。而就在近日,其首席执行官ROB MAY在某科技网站撰文,指出了一些聊天机器人在自然语言处理上面临的问题,并表示,虽然自然语言处理技术能够改善用户体验,但依旧面临着各种技术挑战。

为了理解自然语言,聊天机器人还要走很多“歪路”

以下是正文:

目前诸如Slack以及HipChat等聊天机器人的应用逐步增多,企业都在使用聊天机器人发挥更多功能。不少应用程序开发商都在试图抢占这个新的风口,特别是不断加强对自然语言处理技术的研究,从而寄希望于通过该技术提升用户体验。

对于自然语言处理技术,我们已经投入很多精力来改进、来提升相关的用户体验。自然语言处理技术是一个新兴的研究领域,尽管我们拥有一个强大的数据科学研究团队,但对于该技术的研发还处于初始阶段。目前来看,自然语言处理技术依旧不够成熟,也不够完善,相关的工程实例根本谈不上良好的用户体验。

不久前,我们推出了具备自然语言处理功能的聊天机器人Task Assistant,超过700家公司使用了该产品,产生了不少相关教训:

1、人类语言极为不同

即便是关于简单任务,人类与聊天机器人之间的交互也各有不同。在用户语言中,充斥着各式各样的夸张、隐喻、文字拼写错误以及俚语,这些语言组织方式的存在使得聊天机器人需要大量的训练。

Facebook语言技术开发团队工程总监艾伦·帕克(Alan Packer)曾就如何构建机器翻译技术进行过深入探讨。虽然工作语言并不像用户的日常用语一样多样化,我们可以通过所提供聊天机器人的类型对不同工作进行区分,从而对机器所能理解的语言加以限制。虽然自然语言处理技术仍非易事,但是通过针对不同工作用户进行相应调整,能够有效减少机器理解歧义引发的相关问题。

2、聊天机器人不能将所有不理解转嫁给背后的人类客服

很多聊天机器人的背后都有人类干预,当机器无法理解用户语言时,它们将相关问题转给人类处理。这种处理问题的想法是通过这种方式训练聊天机器人,直至其存储了足够多的数据以应对各种问题。但当用户期望获得更好的用户体验,并期望机器能够完全理解其意思时,这并不是一个可持续性的解决方法。因为当用户提出一个独一无二的问题时,机器无法进行扩展。据统计,目前15%的谷歌搜索都是独一无二的,这意味着每天都有上亿次的独特查询。对于聊天机器人来说,要回答所有的人类问题时相当困难的,因此单单依靠背后的人类客服并不是长久之计。

为了理解自然语言,聊天机器人还要走很多“歪路”

第一点已经不用多说了,毕竟在这一点上,多数人都已有了自己的认识,而关键的第二点却一针见血的说出了当前的一个盲点所在。的确,按照当前的方法,聊天机器人也只是一个会模仿的提线木偶而已,并不能真正的理解自然语言,而这样就代表着一切努力终将是白费力气。

不过,在当前针对自然理解语言面临的问题上,ROB还能够提出这与众不同的一点,如此新颖奇特,也难怪他的公司在机器学习与自然语言处理上能达到如此成就。


原文发布时间: 2016-08-13 22:16
本文作者: 韩璐
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
人工智能 自然语言处理 机器人
智能电话机器人核心技术:自然语言处理
什么是自然语言处理? 自然语言处理是计算机科学领域与人工智能领域中的一个重要方向.它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法.自然语言处理是一门融语言学、计算机科学、数学于一体的科学.因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别. 自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统.因而它是计算机科学的一部分. 自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域.
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】自然语言处理(NLP)的突破,关注NLP在机器翻译、情感分析、聊天机器人等方面的最新研究成果和应用案例。
自然语言处理(NLP)作为人工智能的一个重要分支,近年来取得了显著的突破,特别在机器翻译、情感分析、聊天机器人等领域取得了显著的研究成果和广泛的应用。以下是对这些领域最新研究成果和应用案例的概述,并附带相应的代码实例。
102 1
|
3月前
|
机器学习/深度学习 自然语言处理 机器人
【Azure 机器人】微软Azure Bot 编辑器系列(6) : 添加LUIS,理解自然语言 (The Bot Framework Composer tutorials)
【Azure 机器人】微软Azure Bot 编辑器系列(6) : 添加LUIS,理解自然语言 (The Bot Framework Composer tutorials)
|
4月前
|
机器学习/深度学习 自然语言处理 算法
NLP技术在聊天机器人中的应用:技术探索与实践
【7月更文挑战第13天】NLP技术在聊天机器人中的应用已经取得了显著的成果,并将在未来继续发挥重要作用。通过不断探索和创新,我们可以期待更加智能、自然的聊天机器人的出现,为人类生活带来更多便利和乐趣。
|
5月前
|
自然语言处理 机器人 机器学习/深度学习
探索NLP在聊天机器人中的应用
【6月更文挑战第3天】本文探讨了NLP在聊天机器人中的应用,包括自然语言理解(NLU)、自然语言生成(NLG)和对话管理(DM)。NLU帮助机器人识别意图和实体,NLG生成人类友好的回复,DM则控制对话流程。通过深度学习和预训练语言模型,聊天机器人正变得更加智能。未来,多模态交互将成为趋势,提升用户体验。NLP技术将持续推动聊天机器人发展,创造更多可能性。
|
人工智能 自然语言处理 机器人
Prompt learning 教学[进阶篇]:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人
Prompt learning 教学[进阶篇]:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人
Prompt learning 教学[进阶篇]:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人
|
6月前
|
人工智能 自然语言处理 机器人
自然语言开发AI应用,利用云雀大模型打造自己的专属AI机器人
如今,大模型层出不穷,这为自然语言处理、计算机视觉、语音识别和其他领域的人工智能任务带来了重大的突破和进展。大模型通常指那些参数量庞大、层数深、拥有巨大的计算能力和数据训练集的模型。 但不能不承认的是,普通人使用大模型还是有一定门槛的,首先大模型通常需要大量的计算资源才能进行训练和推理。这包括高性能的图形处理单元(GPU)或者专用的张量处理单元(TPU),以及大内存和高速存储器。说白了,本地没N卡,就断了玩大模型的念想吧。 其次,大模型的性能往往受到模型调优和微调的影响。这需要对模型的超参数进行调整和优化,以适应特定任务或数据集。对大模型的调优需要一定的经验和专业知识,包括对深度学
自然语言开发AI应用,利用云雀大模型打造自己的专属AI机器人
|
6月前
|
机器学习/深度学习 自然语言处理 机器人
【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)
【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)
732 10
|
6月前
|
自然语言处理 机器人 数据库
【Python自然语言处理+tkinter图形化界面】实现智能医疗客服问答机器人实战(附源码、数据集、演示 超详细)
【Python自然语言处理+tkinter图形化界面】实现智能医疗客服问答机器人实战(附源码、数据集、演示 超详细)
196 3
|
6月前
|
机器学习/深度学习 自然语言处理 机器人
【Tensorflow+自然语言处理+RNN】实现中文译英文的智能聊天机器人实战(附源码和数据集 超详细)
【Tensorflow+自然语言处理+RNN】实现中文译英文的智能聊天机器人实战(附源码和数据集 超详细)
90 1

热门文章

最新文章