魔搭中文开源模型社区:模型即服务-大模型驱动的自然语言开放生态(上)

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 魔搭中文开源模型社区:模型即服务-

 

作者:黄非阿里巴巴达摩院语言技术实验室研究员

 

一、 层次化预训练模型底座

 

image.png

 

在8月份,阿里巴巴发布了通义预训练模型体系,包括NLP、CV和多模态等模型。在自然语言处理方面,通义Alice Mind预训练模型的底座包括语言理解、生成多语言、多模态等模型。除此之外,通义Alice Mind还有业界广泛应用的模型,比如BERT、GPT、DeBERTa、RoBERTa等等。

 

在此基础上,ModelScope社区针对自然语言,为下游任务提供了文本分类、智能对话翻译、文本纠错等模型。ModelScope社区针对不同行业,丰富了相应的行业模型,方便开发者使用。

 

ModelScope社区通过建立一站式的服务平台,包括模型部署、推理、上线服务,数据集、丰富文档等等,尽可能的方便开发者使用达摩院和其他合作版提供的最先进的模型能力。

 

image.png

 

阿里巴巴自然语言处理的预训练模型Alice Mind,为大家提供了多样模型。其中,通用预训练模型StructBERT,在中文理解CLUE Benchmark榜单上,总榜/分类/阅读理解三榜第一,入选“1o Leading Language Models For NLP In 2021"。

 

与此同时,生成式预训练模型PALM,支持条件式生成模型,在MS MARCO榜单上排名第一。相比中文SOTA,PALM的四个生成任务数据集平均提升1.1个点。

 

超大中文预训练模型PLUG,是首个统一自然语言理解和生成能力的超大中文文本预训练模型(270亿和2万亿参数)。目前,已初步建成PLUG大模型完整服务链路,大模型推理加速10+倍。

 

基于PLUG的多模态预训练模型mPLUG,支持端到端多模态预训练模型,在VQA

Challenge 2021中排名第一,并首次超越人类结果,被MIT Technology Review中国列为核心技术突破。

 

image.png

 

与此同时,阿里云提供的多模态的预训练模型底座mPLUG,充分利用了阿里云的计算环境。mPLUG可以针对于下游任务开发,简单进行一些翻译任务,代码商城、作文写作、百科问答、诗词对联等等。

 

 


相关文章
|
2月前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
|
5天前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
53 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
10天前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
109 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
1月前
|
人工智能 自然语言处理
Promptriever:信息检索模型,支持自然语言提示响应用户搜索需求
Promptriever 是一种新型信息检索模型,由约翰斯·霍普金斯大学和 Samaya AI 联合推出。该模型能够接受自然语言提示,并以直观的方式响应用户的搜索需求。通过在 MS MARCO 数据集上的训练,Promptriever 在标准检索任务上表现出色,能够更有效地遵循详细指令,提高查询的鲁棒性和检索性能。
62 6
Promptriever:信息检索模型,支持自然语言提示响应用户搜索需求
|
2月前
|
人工智能 自然语言处理 PyTorch
AutoVFX:自然语言驱动的视频特效编辑框架
AutoVFX是一个先进的自然语言驱动的视频特效编辑框架,由伊利诺伊大学香槟分校的研究团队开发。该框架能够根据自然语言指令自动创建真实感和动态的视觉特效(VFX)视频,集成了神经场景建模、基于大型语言模型(LLM)的代码生成和物理模拟技术。本文详细介绍了AutoVFX的主要功能、技术原理以及如何运行该框架。
54 1
AutoVFX:自然语言驱动的视频特效编辑框架
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索深度学习中的Transformer模型及其在自然语言处理中的应用
探索深度学习中的Transformer模型及其在自然语言处理中的应用
65 5
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
229 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
118 0
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
228 0
|
2月前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
144 2

热门文章

最新文章

相关产品

  • 自然语言处理