使用Numpy和Opencv完成图像的基本数据分析(Part I)

简介: 随着科技的进步,使用Python包访问数字图像的内部变得更容易理解其属性和性质,掌握对数字图像处理的能力显得是十分有必要。

1
       对于深度学习而言,很多任务都是与数字图形处理打交道。这类任务的数据集一般是由很多张图像构成,有时候,当原始图像不能直接送入模型中时,需要对其进行一定的预处理操作,这时候就不得不向大家介绍一个十分有用的软件包OpenCV,用它处理图像起来非常方便,OpenCV是一个基于BSD许可发行的跨平台计算机视觉库,它轻量且高效,是由一系列C函数和少量C++类构成,支持Python、MATLAB等语言接口,内部包含了很多图像处理的相关算法。下面将向大家介绍如何使用NumPy和OpenCV对数字图像进行简单的处理方法:

关于像素的一些知识

       在程序世界里,图像输入到计算机中时,与人眼所见的图像的形式不太一样。计算机将图像存储为类似于马赛克的小方块,就像古老的方块马赛克艺术的形式。如果方形块太大,那么就很难制作出光滑的边缘和曲线。使用的方块越小,则越平滑,或者说图像的像素就越少,方块的大小有时候也被称为图像的分辨率。
       矢量图像是存储图像的一些不同方法,目的是为了避免与像素相关的问题。但是,即使是矢量图像,最终也会显示为像素级的马赛克。像素一词表示图像元素,描述每个像素的简单方法是使用三种颜色的组合,即红色(Red),绿色(Green),蓝色(Blue),即我们平时所说的RGB图像。
在RGB图像中,每个像素由分别与红色,绿色,蓝色的值相关联的三个8比特数表示。假设使用放大镜观察,如果我们放大图片,就会看到图片是由微小的光点或更加具体的像素组成,更有趣的是,看到的那些小光点实际上是多个微小不同颜色的小光点,且颜色只有红色、绿色和蓝色。
       假设现在从远处观察,创建一张图像,可以看到一张图像实际上由像素点值的开关决定(像素值为1表示开,像素值为0表示关),这些开关组合创建了图像,基本上,我们每天在屏幕上看到的图像都是这种。
每张图像都以数字形式的像素组成,像素是构成图片的最小信息单位,通常是圆形或方形,且位于二维网格中。
       现在,如果RGB三个值都处于全强度,这意味着其组合值为255,该值表示为白色,如果所有三种颜色都被减弱,或者值设置为0,其值表示为黑色。反过来,三者的不同组合将为我们提供不同特定的像素颜色。由于每个数字都是8比特,因此像素值的取值范围为0-255,从下图可以看到,但R的强度为37.3%,G的强度为45.9%,B的强度为18.8%时,组合成的颜色为深绿(dark green)。

2


       三种颜色的不同组合将产生不同的颜色,由于每个值可以具有256个不同的强度或亮度值,因此总共有1680万(256 x 256 x 256)种不同组合。
       图像的基本知识介绍完毕后进入正题,以下内容将包含Numpy非常基本的图像数据分析、还有一些Python数据包,比如imageio,matplotlib等。本系列博客内容结构如下,先介绍前三个部分:
  • 导入图像并观察其属性
  • 拆分图层
  • 灰度化
  • 对像素值使用逻辑运算符
  • 使用逻辑运算符进行掩码
  • 卫星图像数据分析

导入图像

       下面加载图像并观察其各种属性。注意,在输入下面代码请确保好已经安装好对应的python数据包。

if__name__=='__main__':
importimageio
importmatplotlib.pyplotasplt
%matplotlibinline

pic=imageio.imread('F:/demo_2.jpg')
plt.figure(figsize=(15,15))

plt.imshow(pic)

3

观察图像的基本属性

rint('Type of the image : ',type(pic))
print()
print('Shape of the image : {}'.format(pic.shape))
print('Image Hight {}'.format(pic.shape[0]))
print('Image Width {}'.format(pic.shape[1]))
print('Dimension of Image {}'.format(pic.ndim))

其输出

Type of the image :<class 'imageio.core.util.Image'>

Shape of the image : (562, 960, 3)
Image Hight 562
Image Width 960
Dimension of Image 3

       ndarray的形状表明它是一个三维矩阵,输出结果的前两个数字分别表示高度(height)和宽度(width),第三个数字(即3)表示是该图像是三通道彩色图:红色、绿色和蓝色。因此,如果我们计算RGB图像的大小,则总像素大小将是weiheigh x width x 3

print('Image size {}'.format(pic.size))

print('Maximum RGB value in this image {}'.format(pic.max()))

print('Minimum RGB value in this image {}'.format(pic.min()))


Image size 1618560

Maximum RGB value in this image 255

Minimum RGB value in this image 0

       这些值对于验证而言是很重要的,因为8位颜色强度不能超出0到255范围。
       使用图片可以分配变量,此外还可以访问图像的任何特定像素值,并且还可以分别访问每个RGB通道。

pic[100, 50 ]

Image([109, 143,  46], dtype=uint8)

       在这种情况下:R = 109、G = 143、 B = 46,从这个配置可以看出该像素中有很多绿色,也可以通过三个通道的索引值来从中选择出一个。根据一般规定:

  • 索引0表示红色通道
  • 索引1表示绿色通道
  • 索引2表示蓝色通道
           但在OpenCV中,Images并不是按照RGB的顺序规定,而是BGR。 imageio.imread将图像加载为RGB(或RGBA),但OpenCV假定图像为BGR或BGRA(BGR是OpenCVcolour的默认的式)。
print('Value of only R channel {}'.format(pic[ 100, 50, 0]))

print('Value of only G channel {}'.format(pic[ 100, 50, 1]))

print('Value of only B channel {}'.format(pic[ 100, 50, 2]))

Value of only R channel 109

Value of only G channel 143

Value of only B channel 46

       现在快速查看整个图像中每个通道表示的图像。

plt.title('R channel')

plt.ylabel('Height {}'.format(pic.shape[0]))

plt.xlabel('Width {}'.format(pic.shape[1]))

 

plt.imshow(pic[ : , : , 0])

plt.show()

4

plt.title('G channel')

plt.ylabel('Height {}'.format(pic.shape[0]))

plt.xlabel('Width {}'.format(pic.shape[1]))

 

plt.imshow(pic[ : , : , 1])

plt.show()

5

plt.title('B channel')

plt.ylabel('Height {}'.format(pic.shape[0]))

plt.xlabel('Width {}'.format(pic.shape[1]))

 

plt.imshow(pic[ : , : , 2])

plt.show()

6


       下面,也可以更改RGB的数值。例如,将下面行的红色、绿色、,蓝色图层的值全部设置为全强度,即取值为255。
  • R通道:第100行到110行
  • G通道:第200行到210行
  • B通道:行300行到310行
           本次测试只在一张图像上进行综合处理,方便我们同时查看每个通道的值对图像的影响。
pic =imageio.imread('F:/demo_2.jpg')
pic[50:150 , : , 0] =255# full intensity to those pixel's R channel

plt.figure( figsize= (10,10))

plt.imshow(pic)

plt.show()

7

pic[200:300 , : , 1] =255# full intensity to those pixel's G channel

plt.figure( figsize= (10,10))

plt.imshow(pic)

plt.show()

8

pic[350:450 , : , 2] =255# full intensity to those pixel's B channel

plt.figure( figsize= (10,10))

plt.imshow(pic)

plt.show()

9


       为了更加清楚地对比分析,我们也改变部分列的像素值,这次测试同时更改RGB通道的值。
pic[50:450 , 400:600 , [0,1,2] ] =200

plt.figure( figsize= (10,10))

plt.imshow(pic)

plt.show()

10

拆分图层

       通过以上测试,可以知道,图像的每个像素点都是由三个整数表示。只需要拉出图像阵列的正确切片,就可以将图像分割成单独的颜色分量。

importnumpyasnp

pic=imageio.imread('F:/demo_2.jpg') 

fig,ax=plt.subplots(nrows=1,ncols=3,figsize=(15,5)) 

forc,axinzip(range(3),ax): 

# create zero matrix

split_img=np.zeros(pic.shape,dtype="uint8")# 'dtype' by default: 'numpy.float64' 

# assing each channel split_img[:,:,c]=pic[:,:,c]

# display each channelax.imshow(split_img)

11

灰度化

       黑白图像存储在二维矩阵中,目前存在两种类型的黑白图像:

  • 灰度:灰色阴影的范围:0~255
  • 二进制:像素为黑色或白色:0或255
           灰度处理过程,就是将图像从全彩色转换为灰度图。在图像处理工具中,例如:在OpenCV中,在使用很多含住之前,需要将图像进行灰度处理,这样做是因为灰度处理简化了图像,几乎像降噪一样,这是因为灰度图像中的信息比较少。

       在python中有两种方法可以将图像转换为灰度。但是,更直接的方法是使用matplotlib包,该包执行的操作是获取原始图像的RGB值后进行加权平均。

Y' = 0.299 R + 0.587 G + 0.114 B
pic=imageio.imread('F:/demo_2.jpg') 
gray=lambdargb:np.dot(rgb[...,:3],[0.299,0.587,0.114])
gray=gray(pic) 
plt.figure(figsize=(10,10))
plt.imshow(gray,cmap=plt.get_cmap(name='gray'))
plt.show()

12


       而通过GIMP将颜色转换为灰度图像有三种算法来完成任务:
  • 亮度(Lightness)灰度等级计算为
    Lightness = ½×(max(R,G,B)+ min(R,G,B))
  • 照明度(Luminosity)灰度级将计算为
    Luminosity= 0.21×R + 0.7×G + 0.07×B
  • 平均亮度灰度级将计算为
    Average Brightness=(R + G + B)÷3

       下面让我们尝试实现一下这三个算法中的一种吧,本文选择Luminosity。

pic=imageio.imread('F:/demo_2.jpg') 

gray=lambdargb:np.dot(rgb[...,:3],[0.21,0.72,0.07])

gray=gray(pic) 

plt.figure(figsize=(10,10))

plt.imshow(gray,cmap=plt.get_cmap(name='gray'))

plt.show() 

print('Type of the image : ',type(gray))

print() 

print('Shape of the image : {}'.format(gray.shape))

print('Image Hight {}'.format(gray.shape[0]))

print('Image Width {}'.format(gray.shape[1]))

print('Dimension of Image {}'.format(gray.ndim))

print() 

print('Image size {}'.format(gray.size))

print('Maximum RGB value in this image {}'.format(gray.max()))

print('Minimum RGB value in this image {}'.format(gray.min()))

print('Random indexes [X,Y] : {}'.format(gray[100,50]))

13

Type of the image :<class 'imageio.core.util.Image'> 
Shape of the image : (562,960)
Image Height 562
Image Widht 960
Dimension of Image 2 
Image size 539520
Maximum RGB value in this image 254.9999999997
Minimum RGB value in this image 0.0
Random indexes [X,Y] : 129.07

从图中可以看到,图像变为了灰度图,且图像矩阵变为了二维矩阵。
后续内容请参见“使用Numpy和Opencv完成图像的基本数据分析(Part II)”。

数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

作者信息

Mohammed Innat,机器学习和数据科学研究者
本文由阿里云云栖社区组织翻译。
文章原标题《Basic Image Data Analysis Using Numpy and OpenCV – Part 1》,译者:海棠,审校:Uncle_LLD。
文章为简译,更为详细的内容,请查看原文

相关文章
|
28天前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
34 4
|
8天前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
2月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
2月前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
74 1
|
2月前
|
数据采集 数据挖掘 数据处理
Python数据分析:Numpy、Pandas高级
在上一篇博文中,我们介绍了Python数据分析中NumPy和Pandas的基础知识。本文将深入探讨NumPy和Pandas的高级功能,并通过一个综合详细的例子展示这些高级功能的应用。
|
2月前
|
机器人 计算机视觉
巧用 OpenCV solvePnP() 函数完成由图像坐标系到机器人坐标系的转换(二维坐标系之间的转换)
巧用 OpenCV solvePnP() 函数完成由图像坐标系到机器人坐标系的转换(二维坐标系之间的转换)
48 2
|
2月前
|
数据采集 数据挖掘 数据处理
Python数据分析:Numpy、Pandas基础
本文详细介绍了 Python 中两个重要的数据分析库 NumPy 和 Pandas 的基础知识,并通过一个综合的示例展示了如何使用这些库进行数据处理和分析。希望通过本篇博文,能更好地理解和掌握 NumPy 和 Pandas 的基本用法,为后续的数据分析工作打下坚实的基础。
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析入门:用Python和Numpy探索音乐流行趋势
数据分析入门:用Python和Numpy探索音乐流行趋势
|
3月前
|
数据采集 数据挖掘 数据处理
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
【7月更文挑战第14天】Python的Pandas和NumPy库是数据分析的核心工具。Pandas以其高效的数据处理能力,如分组操作和自定义函数应用,简化了数据清洗和转换。NumPy则以其多维数组和广播机制实现快速数值计算。两者协同工作,如在DataFrame与NumPy数组间转换进行预处理,提升了数据分析的效率和精度。掌握这两者的高级功能是提升数据科学技能的关键。**
36 0
|
8天前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
23 0
下一篇
无影云桌面