Python数据分析篇--NumPy--入门

简介: Python数据分析篇--NumPy--入门

NumPy相关知识

1. NumPy,全称是 Numerical Python,它是目前 Python 数值计算中最重要的基础模块。

2. NumPy 是针对多维数组的一个科学计算模块,这个模块封装了很多数组类型的常用操作。

3. NumPy 中最重要的对象是多维数组。

创建多维数组

1. 将一个列表作为参数传入 numpy 中的 array() 方法即可创建一个多维数组。


2. 我们也可以使用 numpy 中的 ones() 方法或者 zeros() 方法。


3. np.ones() 和 np.zeros() 的参数用于指定生成的多维数组里有多少个元素。


4. 默认生成的是浮点数,numpy 会省略小数点后的 0,因此 1.0 和 0.0 变成了 1. 和 0.。


5. 如果我们想要生成整数的话,可以传入 dtype='类型' 来指定类型。


5. 一般我们使用 import numpy as np ,即用 np 来简写 numpy。

import numpy as np
list=np.array([1,2,3])
print(list)
print(type(list))
#输出结果
#[1 2 3]
#<class 'numpy.ndarray'>
 
one=np.ones(5)
print(one)
print(type(one))
#[1. 1. 1. 1. 1.]
#<class 'numpy.ndarray'>
 
zero=np.zeros(3)
print(zero)
print(type(zero))
#[0. 0. 0.]
#<class 'numpy.ndarray'>
 
one=np.ones(5,dtype='int')
print(one)
print(type(one))
#输出结果 [1 1 1 1 1]

1. 列表间只有加法操作,作用是将两个列表的元素合并在一起。

2. 而多维数组间可以进行加减乘除的四则运算。

3. 运算规则也很简单:将两个数组中对应位置的元素一一进行运算。

import numpy as np
 
data = np.array([1, 2])
ones = np.ones(2)
print(data + ones)
#最终输出 [2. 3.]
 
data = np.array([1, 2])
print(data + 1)
# 输出:[2 3]

多维数组的索引

1. 多维数组的索引与字符串、列表的索引规则相同。

1. data = np.array([1, 2, 3])
2. print(data[0])
3. #输出 1

多维数组的分片

1. 多维数组的分片与字符串、列表的分片规则相同。


2. data[m : n] ,分片是左闭右开区间,即包含 m 不包含 n。


3. 冒号前后的值是可以省略的:省略后冒号前默认为 0,冒号后默认为列表的长度。


4. 对列表分片后的数据进行更改不会影响原数据,但对多维数组分片后的数据进行更改会影响到原数据。


5. 分片支持传入第三个参数——步长,即分片时每隔几个数据取一次值。步长的默认值为 1,当步长为负数时,会将顺序反转。

data = np.array([1, 2, 3])
print(data[0:2])  # 获取索引为 0 和 1 的元素
# 输出:[1 2]
 
data = np.array([1, 2, 3])
# 获取前 2 个元素
print(data[:2])
# 输出:[1 2]
 
# 获取后 2 个元素
print(data[-2:])
# 输出:[2 3]
 
# 获取所有元素
print(data[:])
# 输出:[1 2 3]
 
lst_data = [1, 2, 3]
lst_data2 = lst_data[:]
lst_data2[0] = 6
print(lst_data)
# 输出:[1, 2, 3]
 
arr_data = np.array([1, 2, 3])
arr_data2 = arr_data[:]
arr_data2[0] = 6
print(arr_data)
# 输出:[6 2 3]
 
data = np.array([1, 2, 3, 4, 5, 6])
print(data[::2])  # 省略前两个参数
# 输出:[1 3 5]
 
data = np.array([1, 2, 3, 4, 5, 6])
print(data[::-1])  # 省略前两个参数
# 输出:[6 5 4 3 2 1]

简单的数据分析

集中趋势

1. 集中趋势所反映的是一组数据所具有的共同趋势,它代表了一组数据的总体水平。

2. 其常用指标有平均数、中位数和众数。


离中趋势

1. 离中趋势是指一组数据中各数据值以不同程度的距离偏离其中心(平均数)的趋势。


2. 其常用指标有极差、方差和标准差。


3. 极差是一组数据的最大值减去最小值得到的,反应了数据变动的最大范围。


4. 方差和标准差都能反映数据的离散程度,也就是数据的波动程度。方差和标准差的值越小,说明数据越稳定。  


数据分析操作方法

1. 在 numpy 上调用对应函数并传入数据如:np.std(data)。

import numpy as np
 
player1 = np.array([4, 16, 5, 8, 11, 40, 4, 12, 23, 13])
player2 = np.array([9, 8, 12, 11, 9, 10, 13, 10, 11, 13])
player3 = np.array([4, 6, 8, 5, 6, 7, 6, 5, 8, 6])
print("1号玩家平均数",np.median(player1))
print("2号玩家平均数",np.median(player2))
print("3号玩家平均数",np.median(player3))
print("1号玩家方差",np.std(player1))
print("2号玩家方差",np.std(player1))
print("3号玩家方差",np.std(player1))
 
#输出结果
#1号玩家平均数 11.5
#2号玩家平均数 10.5
#3号玩家平均数 6.0
#1号玩家方差 10.44222198576529
#2号玩家方差 10.44222198576529
#3号玩家方差 10.44222198576529

致谢

感谢您花时间阅读这篇文章!如果您对本文有任何疑问、建议或是想要分享您的看法,请不要犹豫,在评论区留下您的宝贵意见。每一次互动都是我前进的动力,您的支持是我最大的鼓励。期待与您的交流,让我们共同成长,探索技术世界的无限可能!

相关文章
|
18天前
|
Python
Python字符串格式化利器:f-strings入门指南
Python字符串格式化利器:f-strings入门指南
126 80
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
111 2
|
25天前
|
NoSQL MongoDB 开发者
Python与MongoDB的亲密接触:从入门到实战的代码指南
本文详细介绍了Python与MongoDB结合使用的实战技巧,涵盖环境搭建、连接管理、CRUD操作、高级查询、索引优化、事务处理及性能调优等内容。通过15个代码片段,从基础到进阶逐步解析,帮助开发者掌握这对黄金组合的核心技能。内容包括文档结构设计、批量操作优化、聚合管道应用等实用场景,适合希望高效处理非结构化数据的开发者学习参考。
55 0
|
2月前
|
数据管理 开发者 Python
揭秘Python的__init__.py:从入门到精通的包管理艺术
__init__.py是Python包管理中的核心文件,既是包的身份标识,也是模块化设计的关键。本文从其历史演进、核心功能(如初始化、模块曝光控制和延迟加载)、高级应用场景(如兼容性适配、类型提示和插件架构)到最佳实践与常见陷阱,全面解析了__init__.py的作用与使用技巧。通过合理设计,开发者可构建优雅高效的包结构,助力Python代码质量提升。
166 10
|
3月前
|
数据采集 数据可视化 大数据
Python入门修炼:开启你在大数据世界的第一个脚本
Python入门修炼:开启你在大数据世界的第一个脚本
108 6
|
3月前
|
数据可视化 流计算 Python
Python创意爱心代码大全:从入门到高级的7种实现方式
本文分享了7种用Python实现爱心效果的方法,从简单的字符画到复杂的3D动画,涵盖多种技术和库。内容包括:基础字符爱心(一行代码实现)、Turtle动态绘图、Matplotlib数学函数绘图、3D旋转爱心、Pygame跳动动画、ASCII艺术终端显示以及Tkinter交互式GUI应用。每种方法各具特色,适合不同技术水平的读者学习和实践,是表达创意与心意的绝佳工具。
1254 0
|
4月前
|
数据采集 机器学习/深度学习 数据挖掘
数据分析入门:从数据探索到洞察真相
数据分析入门:从数据探索到洞察真相
97 19
|
5月前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
5月前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
4月前
|
数据采集 人工智能 数据挖掘
Python 编程基础与实战:从入门到精通
本文介绍Python编程语言,涵盖基础语法、进阶特性及实战项目。从变量、数据类型、运算符、控制结构到函数、列表、字典等基础知识,再到列表推导式、生成器、装饰器和面向对象编程等高级特性,逐步深入。同时,通过简单计算器和Web爬虫两个实战项目,帮助读者掌握Python的应用技巧。最后,提供进一步学习资源,助你在Python编程领域不断进步。

热门文章

最新文章

推荐镜像

更多