Python数据分析篇--NumPy--入门

简介: Python数据分析篇--NumPy--入门

NumPy相关知识

1. NumPy,全称是 Numerical Python,它是目前 Python 数值计算中最重要的基础模块。

2. NumPy 是针对多维数组的一个科学计算模块,这个模块封装了很多数组类型的常用操作。

3. NumPy 中最重要的对象是多维数组。

创建多维数组

1. 将一个列表作为参数传入 numpy 中的 array() 方法即可创建一个多维数组。


2. 我们也可以使用 numpy 中的 ones() 方法或者 zeros() 方法。


3. np.ones() 和 np.zeros() 的参数用于指定生成的多维数组里有多少个元素。


4. 默认生成的是浮点数,numpy 会省略小数点后的 0,因此 1.0 和 0.0 变成了 1. 和 0.。


5. 如果我们想要生成整数的话,可以传入 dtype='类型' 来指定类型。


5. 一般我们使用 import numpy as np ,即用 np 来简写 numpy。

import numpy as np
list=np.array([1,2,3])
print(list)
print(type(list))
#输出结果
#[1 2 3]
#<class 'numpy.ndarray'>
 
one=np.ones(5)
print(one)
print(type(one))
#[1. 1. 1. 1. 1.]
#<class 'numpy.ndarray'>
 
zero=np.zeros(3)
print(zero)
print(type(zero))
#[0. 0. 0.]
#<class 'numpy.ndarray'>
 
one=np.ones(5,dtype='int')
print(one)
print(type(one))
#输出结果 [1 1 1 1 1]

1. 列表间只有加法操作,作用是将两个列表的元素合并在一起。

2. 而多维数组间可以进行加减乘除的四则运算。

3. 运算规则也很简单:将两个数组中对应位置的元素一一进行运算。

import numpy as np
 
data = np.array([1, 2])
ones = np.ones(2)
print(data + ones)
#最终输出 [2. 3.]
 
data = np.array([1, 2])
print(data + 1)
# 输出:[2 3]

多维数组的索引

1. 多维数组的索引与字符串、列表的索引规则相同。

1. data = np.array([1, 2, 3])
2. print(data[0])
3. #输出 1

多维数组的分片

1. 多维数组的分片与字符串、列表的分片规则相同。


2. data[m : n] ,分片是左闭右开区间,即包含 m 不包含 n。


3. 冒号前后的值是可以省略的:省略后冒号前默认为 0,冒号后默认为列表的长度。


4. 对列表分片后的数据进行更改不会影响原数据,但对多维数组分片后的数据进行更改会影响到原数据。


5. 分片支持传入第三个参数——步长,即分片时每隔几个数据取一次值。步长的默认值为 1,当步长为负数时,会将顺序反转。

data = np.array([1, 2, 3])
print(data[0:2])  # 获取索引为 0 和 1 的元素
# 输出:[1 2]
 
data = np.array([1, 2, 3])
# 获取前 2 个元素
print(data[:2])
# 输出:[1 2]
 
# 获取后 2 个元素
print(data[-2:])
# 输出:[2 3]
 
# 获取所有元素
print(data[:])
# 输出:[1 2 3]
 
lst_data = [1, 2, 3]
lst_data2 = lst_data[:]
lst_data2[0] = 6
print(lst_data)
# 输出:[1, 2, 3]
 
arr_data = np.array([1, 2, 3])
arr_data2 = arr_data[:]
arr_data2[0] = 6
print(arr_data)
# 输出:[6 2 3]
 
data = np.array([1, 2, 3, 4, 5, 6])
print(data[::2])  # 省略前两个参数
# 输出:[1 3 5]
 
data = np.array([1, 2, 3, 4, 5, 6])
print(data[::-1])  # 省略前两个参数
# 输出:[6 5 4 3 2 1]

简单的数据分析

集中趋势

1. 集中趋势所反映的是一组数据所具有的共同趋势,它代表了一组数据的总体水平。

2. 其常用指标有平均数、中位数和众数。


离中趋势

1. 离中趋势是指一组数据中各数据值以不同程度的距离偏离其中心(平均数)的趋势。


2. 其常用指标有极差、方差和标准差。


3. 极差是一组数据的最大值减去最小值得到的,反应了数据变动的最大范围。


4. 方差和标准差都能反映数据的离散程度,也就是数据的波动程度。方差和标准差的值越小,说明数据越稳定。  


数据分析操作方法

1. 在 numpy 上调用对应函数并传入数据如:np.std(data)。

import numpy as np
 
player1 = np.array([4, 16, 5, 8, 11, 40, 4, 12, 23, 13])
player2 = np.array([9, 8, 12, 11, 9, 10, 13, 10, 11, 13])
player3 = np.array([4, 6, 8, 5, 6, 7, 6, 5, 8, 6])
print("1号玩家平均数",np.median(player1))
print("2号玩家平均数",np.median(player2))
print("3号玩家平均数",np.median(player3))
print("1号玩家方差",np.std(player1))
print("2号玩家方差",np.std(player1))
print("3号玩家方差",np.std(player1))
 
#输出结果
#1号玩家平均数 11.5
#2号玩家平均数 10.5
#3号玩家平均数 6.0
#1号玩家方差 10.44222198576529
#2号玩家方差 10.44222198576529
#3号玩家方差 10.44222198576529

致谢

感谢您花时间阅读这篇文章!如果您对本文有任何疑问、建议或是想要分享您的看法,请不要犹豫,在评论区留下您的宝贵意见。每一次互动都是我前进的动力,您的支持是我最大的鼓励。期待与您的交流,让我们共同成长,探索技术世界的无限可能!

相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
11天前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
22 2
|
17天前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
1月前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
44 7
|
1月前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
49 5
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
90 3
|
8月前
|
人工智能 Java Python
python入门(二)安装第三方包
python入门(二)安装第三方包
111 1
|
3月前
|
机器学习/深度学习 Python
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
本篇将详细介绍如何在Mac系统上安装和配置Anaconda,如何创建虚拟环境,并学习如何使用 `pip` 和 `conda` 管理Python包,直到成功运行第一个Python程序。通过本篇,您将学会如何高效地使用Anaconda创建和管理虚拟环境,并使用Python开发。
125 4
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
|
3月前
|
IDE 开发工具 iOS开发
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
本篇将详细介绍如何在Mac系统上安装Python,并配置Python开发环境。内容涵盖Python的安装、pip包管理工具的配置与国内镜像源替换、安装与配置PyCharm开发工具,以及通过PyCharm编写并运行第一个Python程序。通过本篇的学习,用户将完成Python开发环境的搭建,为后续的Python编程工作打下基础。
373 2
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置