Apache Spark技术实战(三)利用Spark将json文件导入Cassandra &SparkR的安装及使用

简介: 本文第一部分讲解利用Spark将json文件导入Cassandra;第二部分讲解SparkR的安装及使用。

<一>利用Spark将json文件导入Cassandra

概要

sbt cassandra spark-cassandra-connector

实验目的

将存在于json文件中的数据导入到cassandra数据库,目前由cassandra提供的官方工具是json2sstable,由于对cassandra本身了解不多,这个我还没有尝试成功。

但想到spark sql中可以读取json文件,而spark-cassadra-connector又提供了将RDD存入到数据库的功能,我想是否可以将两者结合一下。

创建KeySpace和Table

为了减少复杂性,继续使用实战3中的keyspace和table,

CREATE KEYSPACE test WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1 };
CREATE TABLE test.kv(key text PRIMARY KEY, value int);

启动spark-shell

与实战3中描述一致。

bin/spark-shell --driver-class-path /root/working/spark-cassandra-connector/spark-cassandra-connector/target/scala-2.10/spark-cassandra-connector_2.10-1.1.0-SNAPSHOT.jar:/root/.ivy2/cache/org.apache.cassandra/cassandra-thrift/jars/cassandra-thrift-2.0.9.jar:/root/.ivy2/cache/org.apache.thrift/libthrift/jars/libthrift-0.9.1.jar:/root/.ivy2/cache/org.apache.cassandra/cassandra-clientutil/jars/cassandra-clientutil-2.0.9.jar:/root/.ivy2/cache/com.datastax.cassandra/cassandra-driver-core/jars/cassandra-driver-core-2.0.4.jar:/root/.ivy2/cache/io.netty/netty/bundles/netty-3.9.0.Final.jar:/root/.ivy2/cache/com.codahale.metrics/metrics-core/bundles/metrics-core-3.0.2.jar:/root/.ivy2/cache/org.slf4j/slf4j-api/jars/slf4j-api-1.7.7.jar:/root/.ivy2/cache/org.apache.commons/commons-lang3/jars/commons-lang3-3.3.2.jar:/root/.ivy2/cache/org.joda/joda-convert/jars/joda-convert-1.2.jar:/root/.ivy2/cache/joda-time/joda-time/jars/joda-time-2.3.jar:/root/.ivy2/cache/org.apache.cassandra/cassandra-all/jars/cassandra-all-2.0.9.jar:/root/.ivy2/cache/org.slf4j/slf4j-log4j12/jars/slf4j-log4j12-1.7.2.jar

准备json文件

以spark自带的person.json文件为例,内容如下所示

{"name":"Andy", "age":30}
{"name":"Justin", "age":19}

数据导入

假设person.json文件存储在$SPARK_HOME目录,在启动spark-shell之后,执行如下语句

sc.stop
import com.datastax.spark.connector._
import org.apache.spark._
val conf = new SparkConf()
conf.set("spark.cassandra.connection.host", "127.0.0.1")
val sc = new SparkContext("local[2]", "Cassandra Connector Test", conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val path = "./people.json"
val people = sqlContext.jsonFile(path)
people.map(p=>(p.getString(10),p.getInt(0)))
      .saveToCassandra("test","kv",SomeColumns("key","value"))

注意:

  1. jsonFile返回的是jsonRDD,其中每一个成员是Row类型,并不行直接将saveToCassandra作用于jsonRDD,需要先作一步转换即map过程
  2. map中使用到的getXXX函数是在事先已知数据类型的情况下取出其值
  3. 最后saveToCassandra触发数据的存储过程

另外一个地方值得记录一下,如果在cassandra中创建的表使用了uuid作为primary key,在scala中使用如下函数来生成uuid

import java.util.UUID
UUID.randomUUID

验证步骤

使用cqlsh来查看数据是否已经真正的写入到test.kv表中。

小结

本次实验结合了以下知识:

本文简要介绍如何使用spark-cassandra-connector将json文件导入到cassandra数据库,这是一个使用spark的综合性示例。

前提条件

假设已经阅读技术实战之3,并安装了如下软件

  1. jdk
  2. scala
  3. spark sql
  4. spark RDD的转换函数
  5. spark-cassandra-connector

<二>SparkR的安装及使用

概要

根据论坛上的信息,在Sparkrelease计划中,在Spark 1.3中有将SparkR纳入到发行版的可能。本文就提前展示一下如何安装及使用SparkR.

SparkR的出现解决了R语言中无法级联扩展的难题,同时也极大的丰富了Spark在机器学习方面能够使用的Lib库。SparkR和Spark MLLIB将共同构建出Spark在机器学习方面的优势地位。

使用SparkR能让用户同时使用Spark RDD提供的丰富Api,也可以调用R语言中丰富的Lib库。

安装SparkR

先决条件:

  1. 已经安装好openjdk 7
  2. 安装好了R

安装步骤:

步骤1: 运行R Shell

bash# R

步骤2:在R shell中安装rJava

install.packages("rJava")

步骤3: 在R shell中安装devtools

install.packages("devtools")

步骤4: 安装好rJava及devtools,接下来安装SparkR

library(devtools)
install_github("amplab-extras/SparkR-pkg", subdir="pkg")

使用SparkR来运行wordcount

安装完SparkR之后,可以用wordcount来检验安装正确与否。

步骤1:在R shell中加载SparkR

library(SparkR)

步骤2:初始化SparkContext及执行wordcount

sc <- sparkR.init(master="local", "RwordCount")
lines <- textFile(sc, "README.md")
words <- flatMap(lines,
  function(line) {
    strsplit(line, " ")[[1]]
  })
wordCount <- lapply(words, function(word) { list(word, 1L) })

counts <- reduceByKey(wordCount, "+", 2L)
output <- collect(counts)
for (wordcount in output) {
  cat(wordcount[[1]], ": ", wordcount[[2]], "\n")
}

如果想将SparkR运行于集群环境中,只需要将master=local,换成spark集群的监听地址即可

小结

时间匆忙,还有两件事情没有来得及细细分析。

  1. SparkR的代码实现
  2. 如果很好的将R中支持的数据挖掘算法与Spark并行化处理能力很好的结合

参考资料

  1. https://github.com/amplab-extras/SparkR-pkg
目录
相关文章
|
2月前
|
消息中间件 资源调度 API
Apache Flink 流批融合技术介绍
本文源自阿里云高级研发工程师周云峰在Apache Asia Community OverCode 2024的分享,内容涵盖从“流批一体”到“流批融合”的演进、技术解决方案及社区进展。流批一体已在API、算子和引擎层面实现统一,但用户仍需手动配置作业模式。流批融合旨在通过动态调整优化策略,自动适应不同场景需求。文章详细介绍了如何通过量化指标(如isProcessingBacklog和isInsertOnly)实现这一目标,并展示了针对不同场景的具体优化措施。此外,还概述了社区当前进展及未来规划,包括将优化方案推向Flink社区、动态调整算子流程结构等。
388 31
Apache Flink 流批融合技术介绍
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1
|
1月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
57 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
27天前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
34 1
|
2月前
|
Apache
多应用模式下,忽略项目的入口文件,重写Apache规则
本文介绍了在多应用模式下,如何通过编辑Apache的.htaccess文件来重写URL规则,从而实现忽略项目入口文件index.php进行访问的方法。
|
2月前
|
分布式计算 Java Apache
Apache Spark Streaming技术深度解析
【9月更文挑战第4天】Apache Spark Streaming是Apache Spark生态系统中用于处理实时数据流的一个重要组件。它将输入数据分成小批次(micro-batch),然后利用Spark的批处理引擎进行处理,从而结合了批处理和流处理的优点。这种处理方式使得Spark Streaming既能够保持高吞吐量,又能够处理实时数据流。
70 0
|
3月前
|
安全 搜索推荐 数据挖掘
文件解析的终极工具:Apache Tika
文件解析的终极工具:Apache Tika
154 0
|
SQL 分布式计算 Scala
[转载] 是时候学习真正的 spark 技术了
spark sql 可以说是 spark 中的精华部分了,我感觉整体复杂度是 spark streaming 的 5 倍以上,现在 spark 官方主推 structed streaming, spark streaming 维护的也不积极了, 我们基于 spark 来构建大数据计算任务,重心也要...
|
16天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
48 2
ClickHouse与大数据生态集成:Spark & Flink 实战

推荐镜像

更多