嵌入式视觉领域的机器学习

简介:

机器学习最重要的应用之一是嵌入式机器视觉领域,各类系统正在从视觉使能系统演进为视觉引导自动化系统。嵌入式视觉应用与其他更简单的机器学习应用的区别在于它们采用二维输入格式。在众多机器学习应用中极为常用的神经网络是深度神经网络 (DNN)。这类神经网络拥有多个隐藏层,能实现更复杂的机器学习任务。
在机器学习实现方案中,通过使用称为卷积神经网络 (CNN) 的网络结构,因为它们能够处理二维输入。CNN 是一类前馈网络,内置多个卷积层和子采样层以及一个单独的全连通网络,以执行最终分类。鉴于 CNN 的复杂性,它们也归属深度学习类别。在卷积层中,输入图像被细分为一系列重叠的小模块。在进行进一步的子采样和其它阶段之前,该卷积的结果先通过激活层创建激活图,然后应用到最终的全连通网络上。CNN 网络的具体定义因实现的网络架构而异,但它一般会包含至少下列元:
卷积 – 用于识别图像中的特征
修正线性单元(reLU)- 用于在卷积后创建激活图的激活层
最大池化 – 在层间进行子采样
全连通 - 执行最终分类
这些元中每一个元的权重通过训练决定,同时 CNN 的优势之一在于训练网络相对容易。通过训练生成权重需要庞大的图像集,其中既有需要检测的对象,也有伪图像。这样能让我们为 CNN 创建所需的权重。由于训练流程中所涉及的处理要求,训练流程一般运行在提供高性能计算的云处理器上。
框架
机器学习是一个复杂的课题,尤其是在每次不得不从头开始,定义网络、网络架构和生成训练算法的时候。为帮助工程师实现网络和训练网络,有一些行业标准框架可供使用,例如 Caffe 和 Tensor Flow。Caffe 框架为机器学习开发人员提供各种库、模型和 C++ 库内的预训练权重,同时提供 Python 和 Matlab 绑定。该框架能让用户无需从头开始即能创建网络并训练网络,以开展所需的运算。为便于重复使用,Caffe 用户能通过 model zoo 共享自己的模型。Model Zoo 提供多种能根据所需的专门任务实现和更新的模型。这些网络和权重定义在 prototxt 文件中。在用于机器学习环境时,prototxt 文件是用于定义推断引擎的文件。

相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
28 2
|
5月前
|
机器学习/深度学习 数据可视化 开发者
视觉的力量!Python 机器学习模型评估,Matplotlib 与 Seaborn 如何助力决策更明智?
【7月更文挑战第23天】在Python机器学习中,模型评估不可或缺。Matplotlib与Seaborn作为数据可视化工具,助力洞察模型性能。Matplotlib基础灵活,构建复杂图表;Seaborn在其上层,简化绘图,提升美观。从折线图追踪损失到条形图对比准确率,两者互补,促进高效决策制定。尽管Matplotlib掌控力强,但Seaborn友好快捷,适于统计图形。结合使用,可将数据转化成深刻见解。
46 6
|
4月前
|
机器学习/深度学习 人工智能 算法
【机器学习】基于YOLOv10实现你的第一个视觉AI大模型
【机器学习】基于YOLOv10实现你的第一个视觉AI大模型
201 0
|
6月前
|
机器学习/深度学习
【机器学习】视觉基础模型的三维意识:前沿探索与局限
【机器学习】视觉基础模型的三维意识:前沿探索与局限
148 0
|
机器学习/深度学习 人工智能 对象存储
PAI 的视觉模型平台插件|学习笔记
快速学习 PAI 的视觉模型平台插件。
117 0
PAI 的视觉模型平台插件|学习笔记
|
机器学习/深度学习 人工智能 分布式计算
PAI视觉算法组件-图像分类Quick Start
PAI Designer(Studio 2.0)是基于云原生架构Pipeline Service(PAIFlow)的可视化建模工具, 提供可视化的机器学习开发环境,实现低门槛开发人工智能服务。同时,系统提供丰富且成熟的机器学习算法,覆盖商品推荐、金融风控及广告预测等场景,支持基于MaxCompute、PAI-DLC、Flink等计算资源进行大规模分布式运算,可以满足您不同方向的业务需求。本文将结合智能标注简单演示机器学习平台进行图像分类的一个展示,以供参考。
261 0
PAI视觉算法组件-图像分类Quick Start
|
机器学习/深度学习 人工智能 文字识别
阿里云机器学习平台PAI-AI行业插件-视觉模型平台OCR模型训练使用简明教程
AI行业插件提供视觉模型训练插件和通用模型训练插件,他们支持在线标注、自动模型训练、超参优化及模型评估。您只需要准备少量标注数据,并设置训练时长,就可以得到深度优化的模型。同时,插件平台与PAI-EAS高效对接,可以快速将训练模型部署为RESTful服务。视觉模型训练插件支持视觉领域常用模型的标注、训练及发布,并针对移动端场景进行了模型深度优化,您可以通过手机扫码快速体验模型效果,也可以将模型进行服务端部署。本文着重讲述OCR文字识别使用简明教程
574 0
阿里云机器学习平台PAI-AI行业插件-视觉模型平台OCR模型训练使用简明教程
|
机器学习/深度学习 传感器 算法
赛灵思推出reVISION堆栈,进军广泛的视觉导向机器学习领域
2017 年 3 月 13 日,通过名为 reVISION™的堆栈,All programmable 技术和器件公司赛灵思(Xilinx)宣布将赛灵思技术扩展至广泛的视觉导向机器学习应用领域,解决软件及算法工程师 80% 的开发难题。
185 0
赛灵思推出reVISION堆栈,进军广泛的视觉导向机器学习领域
|
机器学习/深度学习
机器学习小白,还不快pick一下——【视觉与图像:阈值分割】
机器学习小白,还不快pick一下——【视觉与图像:阈值分割】
1075 0