hadoop之 Hadoop1.x和Hadoop2.x构成对比

简介:

 

Hadoop1.x构成: HDFS、MapReduce(资源管理和任务调度);运行时环境为JobTracker和TaskTracker;

Hadoop2.0构成:HDFS、MapReduce/其他计算框架、YARN; 运行时环境为YARN

  1、HDFS:HA、NameNode Federation

  2、MapReduce/其他计算框架:运行在YARN之上的MapReduce通常称之为MapReduce2.0(MRv2)

  3、YARN:资源管理系统(Yet Another Resource Negotiator),在其之上可以运行各种计算框架,如:MapReduce、Storm、Spark等;

 

HDFS2.0

解决HDFS1.0中单点故障内存受限问题

解决单点故障: HDFS HA(High Available)

  通过主备NameNode,当主NameNode发生故障时则切换到备NameNode;

解决内存受限问题: HDFS Federation

  水平扩展,支持多个NameNode

  每个NameNode分管一部分目录;不同的NameNode可以分管不同的应用;

  所有NameNode共享所有DataNode存储的资源

 

HDFS2.0和HDFS1.0相比、仅是架构上发生了变化,使用方式不变,对HDFS使用者来说是透明的。比如说hdfs shell命令:

hadoop fs -ls /luogankun

hadoop fs -mkdir /luogankun/data

在HDFS1.0和HDFS2.0中用法是一致的。

 

YARN

Hadoop2.0新引入的资源管理系统

YARN核心思想:将MRv1中JobTracker的资源管理和任务调度分开,分别由ResourceManager和ApplicationMaster进程实现;

ResourceManager:负责整个集群的资源管理;整个集群只有一个;

ApplicationMaster:负责应用程序相关的事务,比如:任务调度、任务监控和任务容错;一个应用程序对应一个ApplicationMaster;

 

YARN引入的好处:使得多个计算框架可以运行在一个集群中,比如:MapReduce、Spark、Storm等;

 

MapReduce On YARN

运行在YARN之上的MapReduce称为MRv2;

将MapReduce作业直接运行在YARN上,而不是运行在由JobTracker和TaskTracker构建的MRv1之上;在Hadoop2.0中并不存在JobTracker和TaskTracker;

MRv2的模块基本功能:

1、YARN:负责资源管理和调度;

2、MRAppMaster:负责一个应用程序/作业的任务切分、任务调度、任务监控和容错;

3、Map/Reduce Task:任务驱动引擎,与MRv1一致;

 

每个应用程序/作业对应一个MRAppMaster,所以:

1、单个应用程序/作业运行失败,不会影响其他应用程序/作业;

2、负责应用程序/作业相关的事务,包括将从YARN分配得到的资源二次分配给内部的任务、任务切分、任务健康和容错等;

source : http://www.cnblogs.com/luogankun/p/3886989.html

文章可以转载,必须以链接形式标明出处。

本文转自 张冲andy 博客园博客,原文链接: http://www.cnblogs.com/andy6/p/7679184.html   ,如需转载请自行联系原作者
相关文章
|
存储 SQL 分布式计算
Hadoop 概述、Hadoop 发展历史、Hadoop 三大发行版本、Hadoop优势、Hadoop组成、Hadoop1.x、2.x、3.x区别、HDFS架构概述、大数据技术生态体系、推荐系统框架图
高可靠性、高扩展性、高效性、高容错性YARN架构概述、MapReduce架构概述、HDFS、YARN、MapReduce三者关系、1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。 2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。 3)Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。MapReduce将计算过程分为两个阶段:
Hadoop 概述、Hadoop 发展历史、Hadoop 三大发行版本、Hadoop优势、Hadoop组成、Hadoop1.x、2.x、3.x区别、HDFS架构概述、大数据技术生态体系、推荐系统框架图
|
存储 分布式计算 资源调度
Hadoop1.x 和 Hadoop2.x 的区别|学习笔记
快速学习 Hadoop1.x 和 Hadoop2.x 的区别
320 0
Hadoop1.x 和 Hadoop2.x 的区别|学习笔记
|
分布式计算 资源调度 Hadoop
|
存储 分布式计算 资源调度
Hadoop1.X 与 Hadoop2.X比较
鉴于好久没有更新博客,且最近开始找工作,所以对以往的相关知识进行整理 一:Haddop版本介绍 0.20.x版本最后演化成了现在的1.0.x版本 0.23.x版本最后演化成了现在的2.
1416 0
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
200 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
87 2
|
11天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
46 4
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
124 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
90 1
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
86 1