Hadoop 概述、Hadoop 发展历史、Hadoop 三大发行版本、Hadoop优势、Hadoop组成、Hadoop1.x、2.x、3.x区别、HDFS架构概述、大数据技术生态体系、推荐系统框架图

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 高可靠性、高扩展性、高效性、高容错性YARN架构概述、MapReduce架构概述、HDFS、YARN、MapReduce三者关系、1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。 2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。 3)Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。MapReduce将计算过程分为两个阶段:

1.Hadoop 概述

1.1Hadoop 是什么

1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
2)主要解决,海量数据的存储和海量数据的分析计算问题。
3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。
在这里插入图片描述

1.2Hadoop 发展历史(了解)

1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优化升级,查询引擎和索引引擎。
在这里插入图片描述

Hadoop创始人Doug Cutting

2)2001年年底Lucene成为Apache基金会的一个子项目。
3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。
4)学习和模仿Google解决这些问题的办法 :微型版Nutch。
5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)

GFS --->HDFS


Map-Reduce --->MR


BigTable --->HBase

6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。
7)2005 年Hadoop 作为 Lucene的子项目Nutch的一部分正式引入Apache基金会。
8)2006年3月份,Map-Reduce和Nutch Distributed File System(NDFS)分别被纳入到Hadoop项目中,Hadoop就此正式诞生,标志着大数据时代来临。
9)名字来源于Doug Cutting儿子的玩具大象
在这里插入图片描述

Hadoop的logo

1.3Hadoop 三大发行版本(了解)

Hadoop三大发行版本:Apache、Cloudera、Hortonworks。
Apache版本最原始(最基础)的版本,对于入门学习最好。2006
Cloudera内部集成了很多大数据框架,对应产品CDH。2008
Hortonworks文档较好,对应产品HDP。2011
Hortonworks现在已经被 Cloudera 公司收购,推出新的品牌CDP。

在这里插入图片描述
在这里插入图片描述

1.3.1Apache Hadoop

官网地址:http://hadoop.apache.org
下载地址:https://hadoop.apache.org/releases.html

1.3.2Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh
下载地址:https://docs.cloudera.com/documentation/enterprise/6/release-notes/topics/rg_cdh_6_download.html
(1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support
(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。Cloudera的标价为每年每个节点10000 美元。
(4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop 集群,并对集群的节点及服务进行实时监控。

1.3.3Hortonworks Hadoop

官网地址:https://hortonworks.com/products/data-center/hdp/
下载地址:https://hortonworks.com/downloads/#data-platform
(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。
(3)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
(4)2018年Hortonworks目前已经被Cloudera公司收购。

1.4Hadoop优势(4 高)

1.4.1高可靠性

Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
在这里插入图片描述

1.4.2高扩展性

在集群间分配任务数据,可方便的扩展数以千计的节点。
在这里插入图片描述

1.4.3高效性

在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
在这里插入图片描述

1.4.4高容错性

能够自动将失败的任务重新分配。

在这里插入图片描述

1.5Hadoop组成(面试重点)

1.5.1Hadoop1.x、2.x、3.x区别

在这里插入图片描述

1.5.2HDFS架构概述

Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统。

1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
3)Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

1.5.3YARN架构概述

Yet Another Resource Negotiator 简称 YARN ,另一种资源协调者,是 Hadoop 的资源管理器。

1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大
2)NodeManager(NM):单个节点服务器资源老大
3)ApplicationMaster(AM):单个任务运行的老大
4)Container:容器,相当一台独立的服务器,里面封装了
任务运行所需要的资源,如内存、CPU、磁盘、网络等。

在这里插入图片描述

说明1:客户端可以有多个
说明2:集群上可以运行多个ApplicationMaster
说明3:每个NodeManager上可以有多个Container

1.5.4MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总

在这里插入图片描述

1.5.5HDFS、YARN、MapReduce三者关系

在这里插入图片描述

1.6大数据技术生态体系

在这里插入图片描述

图中涉及的技术名词解释如下:
1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统;
4)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
5)Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
6)Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。
7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

1.7推荐系统框架图

在这里插入图片描述

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
241 6
|
4月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
110 2
|
28天前
|
存储 分布式计算 Hadoop
MPP 架构与 Hadoop 架构技术选型指南
MPP架构与Hadoop架构是处理海量数据的两大选择。MPP通过大规模并行处理实现快速查询响应,适用于企业级数据仓库和OLAP应用;Hadoop则以分布式存储和计算为核心,擅长处理非结构化数据和大数据分析。两者各有优劣,MPP适合结构化数据和高性能需求场景,而Hadoop在扩展性和容错性上表现更佳。选择时需综合考虑业务需求、预算和技术能力。
100 14
|
3月前
|
存储 弹性计算 分布式计算
云计算在大数据处理中的优势与挑战
云计算在大数据处理中的优势与挑战
|
4月前
|
机器学习/深度学习 监控 搜索推荐
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
168 1
|
4月前
|
存储 运维 物联网
长安汽车×云器Lakehouse一体化数据平台,成本降低50%,建立智能互联时代的领先优势
长安汽车智能化研究院致力于汽车智能化技术研究,通过构建基于云器科技Lakehouse一体化数据平台,解决了高并发、大规模车联网数据处理难题,实现了数据实时写入、高效分析和成本优化,助力汽车智能驾驶、网联和交通全面发展。
150 0
长安汽车×云器Lakehouse一体化数据平台,成本降低50%,建立智能互联时代的领先优势
|
4月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
139 3
|
4月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
81 2
|
5月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
204 3
YARN(Hadoop操作系统)的架构
|
4月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
72 0