OpenCV使用Harris算法实现角点检测

简介: 纯粹阅读,请移步OpenCV使用Harris算法实现角点检测效果图源码KqwOpenCVFeaturesDemo角点是两条边缘的交点或者在局部邻域中有多个显著边缘方向的点。

纯粹阅读,请移步OpenCV使用Harris算法实现角点检测

效果图

效果图

原图

源码

KqwOpenCVFeaturesDemo

角点是两条边缘的交点或者在局部邻域中有多个显著边缘方向的点。Harris角点检测是一种在角点检测中最常见的技术。

Harris角点检测器在图像上使用滑动窗口计算亮度的变化。

封装

这里用到了RxJava。主要是因为图片处理是耗时操作,会阻塞线程,为了防止界面卡顿,这里使用RxJava进行了线程切换。

/**
 * Harris角点检测
 *
 * @param bitmap 要检测的图片
 */
public void harris(Bitmap bitmap) {
    if (null != mSubscriber)
        Observable
                .just(bitmap)
                // 检测边缘
                .map(new Func1<Bitmap, Mat>() {
                    @Override
                    public Mat call(Bitmap bitmap) {
                        Mat grayMat = new Mat();
                        Mat cannyEdges = new Mat();

                        // Bitmap转为Mat
                        Mat src = new Mat(bitmap.getHeight(), bitmap.getWidth(), CvType.CV_8UC4);
                        Utils.bitmapToMat(bitmap, src);

                        // 原图置灰
                        Imgproc.cvtColor(src, grayMat, Imgproc.COLOR_BGR2GRAY);
                        // Canny边缘检测器检测图像边缘
                        Imgproc.Canny(grayMat, cannyEdges, 10, 100);

                        return cannyEdges;
                    }
                })
                // Harris对角检测
                .map(new Func1<Mat, Bitmap>() {

                    @Override
                    public Bitmap call(Mat cannyEdges) {
                        Mat corners = new Mat();
                        Mat tempDst = new Mat();

                        // 找出角点
                        Imgproc.cornerHarris(cannyEdges, tempDst, 2, 3, 0.04);

                        // 归一化Harris角点的输出
                        Mat tempDstNorm = new Mat();
                        Core.normalize(tempDst, tempDstNorm, 0, 255, Core.NORM_MINMAX);
                        Core.convertScaleAbs(tempDstNorm, corners);

                        // 在新的图像上绘制角点
                        Random r = new Random();
                        for (int i = 0; i < tempDstNorm.cols(); i++) {
                            for (int j = 0; j < tempDstNorm.rows(); j++) {
                                double[] value = tempDstNorm.get(j, i);
                                if (value[0] > 150) {
                                    Core.circle(corners, new Point(i, j), 5, new Scalar(r.nextInt(255), 2));
                                }
                            }
                        }

                        // Mat转Bitmap
                        Bitmap processedImage = Bitmap.createBitmap(corners.cols(), corners.rows(), Bitmap.Config.ARGB_8888);
                        Utils.matToBitmap(corners, processedImage);

                        return processedImage;
                    }
                })
                .subscribeOn(Schedulers.io())
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(mSubscriber);
}

使用

// 图片特征提取的工具类
mFeaturesUtil = new FeaturesUtil(new Subscriber<Bitmap>() {
    @Override
    public void onCompleted() {
        // 图片处理完成
        dismissProgressDialog();
    }

    @Override
    public void onError(Throwable e) {
        // 图片处理异常
        dismissProgressDialog();
    }

    @Override
    public void onNext(Bitmap bitmap) {
        // 获取到处理后的图片
        mImageView.setImageBitmap(bitmap);
    }
});

// Harris角点检测
mFeaturesUtil.harris(mSelectImage);
相关文章
|
3月前
|
计算机视觉
Opencv学习笔记(八):如何通过cv2读取视频和摄像头来进行人脸检测(jetson nano)
如何使用OpenCV库通过cv2模块读取视频和摄像头进行人脸检测,并提供了相应的代码示例。
140 1
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
2月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
3月前
|
机器学习/深度学习 计算机视觉
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
本文介绍了如何使用OpenCV进行特定区域的目标检测,包括人脸检测实例,展示了两种实现方法和相应的代码。
97 1
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
|
3月前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
62 0
|
3月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
100 0
|
5月前
|
机器学习/深度学习 监控 算法
目标检测算法技术
8月更文挑战第11天
|
5月前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第5天

热门文章

最新文章