Harvesting the Low-hanging Fruits: Defending Against Automated Large-Scale Cyber-Intrusions by Focus

简介: https://static.googleusercontent.com/media/research.
https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45557.pdf
目录
打赏
0
0
0
0
680
分享
相关文章
文献解读-Pathogenic variants carrier screening in New Brunswick: Acadians reveal high carrier frequency for multiple genetic disorders
研究首次对新不伦瑞克省阿卡迪亚人进行致病变异携带者筛查,发现某些基因变异频率显著高于一般欧洲人群,表明存在创始人效应。这突出了对阿卡迪亚人进行更全面遗传筛查的必要性。
48 12
文献解读-DNAscope: High accuracy small variant calling using machine learning
在这项研究中,研究组证明了DNAscope在不同样本和不同覆盖度水平下都能达到比DNAseq更高的准确性。使用GA4GH分层区域进行的分层分析,能够确认DNAscope在大多数分层区域中都具有高准确性,并突显了DNAscope在插入缺失(indels)和包含变异检测较困难的基因组区域的分层中具有更高的准确性。DNAscope结合了GATK's HaplotypeCaller中使用的成熟数学和统计模型,以及用于变异基因型分析的机器学习方法,在保持计算效率的同时实现了卓越的准确性。
104 3
文献解读-DNAscope: High accuracy small variant calling using machine learning
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency,大panel二代测序的一致性和重复性:对具有错配修复和校对缺陷的参考物质进行体细胞突变检测的多实验室评估
69 6
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
本文介绍了一种新型的尺度无标度高聚类回声状态网络(SHESN)模型,该模型通过模拟生物神经系统的特性,如小世界现象和无标度分布,显著提高了逼近复杂非线性动力学系统的能力,并在Mackey-Glass动态系统和激光时间序列预测等问题上展示了其优越的性能。
62 1
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
Locally Adaptive Color Correction for Underwater Image Dehazing and Matching
该文提出了一种新颖的水下图像处理方法,结合颜色转移和局部调整来校正颜色,以应对水下光照和散射造成的图像退化。传统颜色转移方法基于全局参数,不适应水下场景中颜色变化的局部性质。文章中,作者通过融合策略,利用光衰减水平估计来实现局部颜色校正。首先,通过暗通道先验恢复彩色补偿图像,然后估计光衰减图。接着,创建一个合成图像,该图像的统计特性代表高衰减区域,用于颜色转移。最后,通过加权融合初始图像和颜色转移图像,生成最终的颜色校正图像。这种方法旨在提高水下图像的对比度和颜色准确性,特别关注高衰减区域。
126 1
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
185 0
Automated defect inspection system for metal surfaces based on deep learning and data augmentation
简述:卷积变分自动编码器(CVAE)生成特定的图像,再使用基于深度CNN的缺陷分类算法进行分类。在生成足够的数据来训练基于深度学习的分类模型之后,使用生成的数据来训练分类模型。
190 0
PAT (Advanced Level) Practice - 1045 Favorite Color Stripe(30 分)
PAT (Advanced Level) Practice - 1045 Favorite Color Stripe(30 分)
113 0
PAT (Advanced Level) Practice - 1045 Favorite Color Stripe(30 分)
Paper:He参数初始化之《Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet C》的翻译与解读
Paper:He参数初始化之《Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification》的翻译与解读
下一篇
oss创建bucket