文献解读-DNAscope: High accuracy small variant calling using machine learning

简介: 在这项研究中,研究组证明了DNAscope在不同样本和不同覆盖度水平下都能达到比DNAseq更高的准确性。使用GA4GH分层区域进行的分层分析,能够确认DNAscope在大多数分层区域中都具有高准确性,并突显了DNAscope在插入缺失(indels)和包含变异检测较困难的基因组区域的分层中具有更高的准确性。DNAscope结合了GATK's HaplotypeCaller中使用的成熟数学和统计模型,以及用于变异基因型分析的机器学习方法,在保持计算效率的同时实现了卓越的准确性。

benchmark and method study.png

关键词:基准与方法研究;基因测序;变异检测;


文献简介

  • 标题(英文):DNAscope: High accuracy small variant calling using machine learning
  • 标题(中文):DNAscope:使用机器学习的高精度小变异调用
  • 发表期刊:bioRxiv
  • 作者单位:Sentieon公司
  • 发表年份:2022
  • 文章地址:https://doi.org/10.1101/2022.05.20.492556

屏幕截图 2024-11-12 092706.png

图1 文献简介

当前的小变异检测技术,尤其是GATK的HaplotypeCaller,在大多数情况下表现优秀。然而,在复杂基因组区域的检测准确性仍有提升空间。随着测序技术在临床应用中的普及,提高这些区域的检测准确性变得越来越重要。传统方法主要依赖专家构建的模型和手动调整的过滤器,而机器学习方法显示出通过学习更复杂的变异特征关系来提高检测准确性的潜力。


测序流程

DNAscope作为GATK HaplotypeCaller的进阶版本,巧妙地融合了成熟的基于单倍型的变异检测方法和先进的机器学习技术,以提升变异检测的准确性。它在保留原有逻辑架构的同时,优化了活跃区域检测和局部组装过程,特别增强了在复杂基因组区域的表现。DNAscope通过为候选变异添加额外信息注释,并结合机器学习模型进行变异基因型分析,显著提高了整体准确度。此外,DNAscope还可与贝叶斯基因型分析模型配合使用,使其在非哺乳动物物种的重测序分析中同样发挥优势,体现了其广泛的适用性和卓越的性能。

F1.large.jpg

图2 DNAscope方法概述

为了评估 DNAscope 在不同个体中的变异调用准确性,研究者使用 Sentieon 的 DNAscope 和 DNAseq(符合 GATK 种系最佳实践)管道,使用来自三个 GIAB 样本的公开数据来调用变异:HG002、HG003 和 HG004。

测试涵盖了不同测序深度(15x至36x),并以NIST GIAB高置信度调用v4.2.1为基准。结果显示,DNAscope在所有样本和测序深度下的SNP和INDEL检测性能均优于DNAseq,特别是在30x HG002样本中,SNP和INDEL的F1分数分别达到99.57%和99.46%,总体错误率降低了一半以上。这种在多个样本中的卓越表现证明了DNAscope模型的泛化能力,而非过拟合于训练样本。此外,DNAscope还展现了适应新测序技术的潜力,如之前研究中开发的MGI模型所示,进一步凸显了其在变异检测领域的先进性和灵活性。

F2.large.jpg

图3 DNAscope 和 DNAseq 的精确召回曲线

F3.large.jpg

图4 对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

为深入评估变异检测工具的性能,研究组利用GA4GH的分层区域进行了详细分析。这些区域包括低可映射性、分段重复、自链区域、MHC以及综合多种复杂因素的"全难度"区域。结果显示,DNAscope在读数映射困难的区域,如低可映射性、分段重复和自链区域,均明显优于DNAseq。特别是在MHC区域的SNP检测和长同聚物区域的INDEL检测中,DNAscope表现更为出色。这些优势共同导致DNAscope在复杂基因组区域的整体表现优于DNAseq。值得注意的是,即使在相对简单的区域,DNAscope在INDEL检测方面仍保持领先,而在SNP检测方面与DNAseq旗鼓相当。这一全面的分层分析凸显了DNAscope在处理各种复杂基因组区域时的强大能力和灵活性。

研究团队通过对HG002、HG003和HG004的36x测序数据进行抽样,创建了5个不同深度的数据集,以评估变异检测工具在不同测序覆盖度下的性能。结果显示,尽管变异检测准确性通常随覆盖度降低而下降,但DNAscope在低覆盖度条件下仍然保持了优于DNAseq的高准确性。特别值得注意的是,DNAscope在20x覆盖度下的表现始终优于DNAseq在36x覆盖度下的表现。这一发现突显了DNAscope改进的架构和机器学习模型过滤在低覆盖度条件下的显著优势,为高效且经济的变异检测提供了新的可能性。

F4.large.jpg

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

研究探讨了DNAscope贝叶斯模型在非人类和多倍体样本上的表现,特别关注15x覆盖度下的性能。结果显示,尽管整体准确性低于其机器学习模型,DNAscope的贝叶斯模型在INDEL检测方面仍优于DNAseq,而在SNP检测方面两者相当。这表明DNAscope在处理非标准样本时仍具有一定优势,尤其是在INDEL检测方面。

F5.large.jpg

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

在标准化的AWS环境中,研究组对DNAscope进行了性能测试。结果显示,使用96+vCPU处理30x全基因组测序样本时,DNAscope的运行时间不到1小时,与DNAseq相当,比BWA/GATK快5倍。测试还表明DNAscope具有良好的可扩展性,运行时间与线程数几乎呈线性关系。

F6.large.jpg

图7 DNAscope 在多个 AWS C6i 实例上的运行时

Sentieon 软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。 截至 2023 年 3 月份,Sentieon 已经在全球范围内为 1300+用户提供服务,被世界一级影响因子刊物如 NEJM、Cell、Nature 等广泛引用,引用次数超过 700 篇。此外,Sentieon 连续数年摘得了 Precision FDA、Dream Challenges 等多个权威评比的桂冠,在业内获得广泛认可。


总结

在这项研究中,研究组证明了DNAscope在不同样本和不同覆盖度水平下都能达到比DNAseq更高的准确性。使用GA4GH分层区域进行的分层分析,能够确认DNAscope在大多数分层区域中都具有高准确性,并突显了DNAscope在插入缺失(indels)和包含变异检测较困难的基因组区域的分层中具有更高的准确性。DNAscope结合了GATK's HaplotypeCaller中使用的成熟数学和统计模型,以及用于变异基因型分析的机器学习方法,在保持计算效率的同时实现了卓越的准确性。

目录
相关文章
|
12天前
|
机器学习/深度学习 算法
|
2月前
|
算法 数据挖掘 数据处理
文献解读-Sentieon DNAscope LongRead – A highly Accurate, Fast, and Efficient Pipeline for Germline Variant Calling from PacBio HiFi reads
PacBio® HiFi 测序是第一种提供经济、高精度长读数测序的技术,其平均读数长度超过 10kb,平均碱基准确率达到 99.8% 。在该研究中,研究者介绍了一种准确、高效的 DNAscope LongRead 管道,用于从 PacBio® HiFi 读数中调用胚系变异。DNAscope LongRead 是对 Sentieon 的 DNAscope 工具的修改和扩展,该工具曾获美国食品药品管理局(FDA)精密变异调用奖。
27 2
文献解读-Sentieon DNAscope LongRead – A highly Accurate, Fast, and Efficient Pipeline for Germline Variant Calling from PacBio HiFi reads
|
4月前
|
机器学习/深度学习 人工智能 算法
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
本文介绍了一种新型的尺度无标度高聚类回声状态网络(SHESN)模型,该模型通过模拟生物神经系统的特性,如小世界现象和无标度分布,显著提高了逼近复杂非线性动力学系统的能力,并在Mackey-Glass动态系统和激光时间序列预测等问题上展示了其优越的性能。
34 1
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
|
7月前
|
机器学习/深度学习 自然语言处理 算法
[BPE]论文实现:Neural Machine Translation of Rare Words with Subword Units
[BPE]论文实现:Neural Machine Translation of Rare Words with Subword Units
46 0
|
算法 PyTorch 算法框架/工具
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
708 0
|
机器学习/深度学习 自然语言处理 算法
Joint Information Extraction with Cross-Task and Cross-Instance High-Order Modeling 论文解读
先前的信息抽取(IE)工作通常独立地预测不同的任务和实例(例如,事件触发词、实体、角色、关系),而忽略了它们的相互作用,导致模型效率低下。
96 0
|
自然语言处理 算法 知识图谱
DEGREE: A Data-Efficient Generation-Based Event Extraction Model论文解读
事件抽取需要专家进行高质量的人工标注,这通常很昂贵。因此,学习一个仅用少数标记示例就能训练的数据高效事件抽取模型已成为一个至关重要的挑战。
163 0
|
机器学习/深度学习 存储 传感器
Automated defect inspection system for metal surfaces based on deep learning and data augmentation
简述:卷积变分自动编码器(CVAE)生成特定的图像,再使用基于深度CNN的缺陷分类算法进行分类。在生成足够的数据来训练基于深度学习的分类模型之后,使用生成的数据来训练分类模型。
157 0
|
机器学习/深度学习 算法 数据挖掘
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
153 0
《Investigation of Transformer based Spelling Correction Model for CTC-based End-to-End Mandarin Speech Recognition》电子版地址
Investigation of Transformer based Spelling Correction Model for CTC-based End-to-End Mandarin Speech Recognition
97 0
《Investigation of Transformer based Spelling Correction Model for CTC-based End-to-End Mandarin Speech Recognition》电子版地址