图像处理之霍夫变换圆检测算法

简介: 图像处理之霍夫变换圆检测算法 之前写过一篇文章讲述霍夫变换原理与利用霍夫变换检测直线, 结果发现访问量还是蛮 多,有点超出我的意料,很多人都留言说代码写得不好,没有注释,结构也不是很清晰,所以 我萌发了再写一篇,介绍霍夫变换圆检测算法,同时也尽量的加上详细的注释,介绍代码 结构.

图像处理之霍夫变换圆检测算法

之前写过一篇文章讲述霍夫变换原理与利用霍夫变换检测直线, 结果发现访问量还是蛮

多,有点超出我的意料,很多人都留言说代码写得不好,没有注释,结构也不是很清晰,所以

我萌发了再写一篇,介绍霍夫变换圆检测算法,同时也尽量的加上详细的注释,介绍代码

结构.让更多的人能够读懂与理解.

一:霍夫变换检测圆的数学原理


根据极坐标,圆上任意一点的坐标可以表示为如上形式, 所以对于任意一个圆, 假设

中心像素点p(x0, y0)像素点已知, 圆半径已知,则旋转360由极坐标方程可以得到每

个点上得坐标同样,如果只是知道图像上像素点, 圆半径,旋转360°则中心点处的坐

标值必定最强.这正是霍夫变换检测圆的数学原理.

二:算法流程

该算法大致可以分为以下几个步骤


三:运行效果

图像从空间坐标变换到极坐标效果, 最亮一点为圆心.


图像从极坐标变换回到空间坐标,检测结果显示:


四:关键代码解析

个人觉得这次注释已经是非常的详细啦,而且我写的还是中文注释

	/**
	 * 霍夫变换处理 - 检测半径大小符合的圆的个数
	 * 1. 将图像像素从2D空间坐标转换到极坐标空间
	 * 2. 在极坐标空间中归一化各个点强度,使之在0〜255之间
	 * 3. 根据极坐标的R值与输入参数(圆的半径)相等,寻找2D空间的像素点
	 * 4. 对找出的空间像素点赋予结果颜色(红色)
	 * 5. 返回结果2D空间像素集合
	 * @return int []
	 */
	public int[] process() {

		// 对于圆的极坐标变换来说,我们需要360度的空间梯度叠加值
		acc = new int[width * height];
		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				acc[y * width + x] = 0;
			}
		}
		int x0, y0;
		double t;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if ((input[y * width + x] & 0xff) == 255) {

					for (int theta = 0; theta < 360; theta++) {
						t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI
						x0 = (int) Math.round(x - r * Math.cos(t));
						y0 = (int) Math.round(y - r * Math.sin(t));
						if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {
							acc[x0 + (y0 * width)] += 1;
						}
					}
				}
			}
		}

		// now normalise to 255 and put in format for a pixel array
		int max = 0;

		// Find max acc value
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if (acc[x + (y * width)] > max) {
					max = acc[x + (y * width)];
				}
			}
		}

		// 根据最大值,实现极坐标空间的灰度值归一化处理
		int value;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {
				value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);
				acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);
			}
		}
		
		// 绘制发现的圆
		findMaxima();
		System.out.println("done");
		return output;
	}
完整的算法源代码, 已经全部的加上注释

package com.gloomyfish.image.transform.hough;
/***
 * 
 * 传入的图像为二值图像,背景为黑色,目标前景颜色为为白色
 * @author gloomyfish
 * 
 */
public class CircleHough {

	private int[] input;
	private int[] output;
	private int width;
	private int height;
	private int[] acc;
	private int accSize = 1;
	private int[] results;
	private int r; // 圆周的半径大小

	public CircleHough() {
		System.out.println("Hough Circle Detection...");
	}

	public void init(int[] inputIn, int widthIn, int heightIn, int radius) {
		r = radius;
		width = widthIn;
		height = heightIn;
		input = new int[width * height];
		output = new int[width * height];
		input = inputIn;
		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				output[x + (width * y)] = 0xff000000; //默认图像背景颜色为黑色
			}
		}
	}

	public void setCircles(int circles) {
		accSize = circles; // 检测的个数
	}
	
	/**
	 * 霍夫变换处理 - 检测半径大小符合的圆的个数
	 * 1. 将图像像素从2D空间坐标转换到极坐标空间
	 * 2. 在极坐标空间中归一化各个点强度,使之在0〜255之间
	 * 3. 根据极坐标的R值与输入参数(圆的半径)相等,寻找2D空间的像素点
	 * 4. 对找出的空间像素点赋予结果颜色(红色)
	 * 5. 返回结果2D空间像素集合
	 * @return int []
	 */
	public int[] process() {

		// 对于圆的极坐标变换来说,我们需要360度的空间梯度叠加值
		acc = new int[width * height];
		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				acc[y * width + x] = 0;
			}
		}
		int x0, y0;
		double t;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if ((input[y * width + x] & 0xff) == 255) {

					for (int theta = 0; theta < 360; theta++) {
						t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI
						x0 = (int) Math.round(x - r * Math.cos(t));
						y0 = (int) Math.round(y - r * Math.sin(t));
						if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {
							acc[x0 + (y0 * width)] += 1;
						}
					}
				}
			}
		}

		// now normalise to 255 and put in format for a pixel array
		int max = 0;

		// Find max acc value
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if (acc[x + (y * width)] > max) {
					max = acc[x + (y * width)];
				}
			}
		}

		// 根据最大值,实现极坐标空间的灰度值归一化处理
		int value;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {
				value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);
				acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);
			}
		}
		
		// 绘制发现的圆
		findMaxima();
		System.out.println("done");
		return output;
	}

	private int[] findMaxima() {
		results = new int[accSize * 3];
		int[] output = new int[width * height];
		
		// 获取最大的前accSize个值
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {
				int value = (acc[x + (y * width)] & 0xff);

				// if its higher than lowest value add it and then sort
				if (value > results[(accSize - 1) * 3]) {

					// add to bottom of array
					results[(accSize - 1) * 3] = value; //像素值
					results[(accSize - 1) * 3 + 1] = x; // 坐标X
					results[(accSize - 1) * 3 + 2] = y; // 坐标Y

					// shift up until its in right place
					int i = (accSize - 2) * 3;
					while ((i >= 0) && (results[i + 3] > results[i])) {
						for (int j = 0; j < 3; j++) {
							int temp = results[i + j];
							results[i + j] = results[i + 3 + j];
							results[i + 3 + j] = temp;
						}
						i = i - 3;
						if (i < 0)
							break;
					}
				}
			}
		}

		// 根据找到的半径R,中心点像素坐标p(x, y),绘制圆在原图像上
		System.out.println("top " + accSize + " matches:");
		for (int i = accSize - 1; i >= 0; i--) {
			drawCircle(results[i * 3], results[i * 3 + 1], results[i * 3 + 2]);
		}
		return output;
	}

	private void setPixel(int value, int xPos, int yPos) {
		/// output[(yPos * width) + xPos] = 0xff000000 | (value << 16 | value << 8 | value);
		output[(yPos * width) + xPos] = 0xffff0000;
	}

	// draw circle at x y
	private void drawCircle(int pix, int xCenter, int yCenter) {
		pix = 250; // 颜色值,默认为白色

		int x, y, r2;
		int radius = r;
		r2 = r * r;
		
		// 绘制圆的上下左右四个点
		setPixel(pix, xCenter, yCenter + radius);
		setPixel(pix, xCenter, yCenter - radius);
		setPixel(pix, xCenter + radius, yCenter);
		setPixel(pix, xCenter - radius, yCenter);

		y = radius;
		x = 1;
		y = (int) (Math.sqrt(r2 - 1) + 0.5);
		
		// 边缘填充算法, 其实可以直接对循环所有像素,计算到做中心点距离来做
		// 这个方法是别人写的,发现超赞,超好!
		while (x < y) {
			setPixel(pix, xCenter + x, yCenter + y);
			setPixel(pix, xCenter + x, yCenter - y);
			setPixel(pix, xCenter - x, yCenter + y);
			setPixel(pix, xCenter - x, yCenter - y);
			setPixel(pix, xCenter + y, yCenter + x);
			setPixel(pix, xCenter + y, yCenter - x);
			setPixel(pix, xCenter - y, yCenter + x);
			setPixel(pix, xCenter - y, yCenter - x);
			x += 1;
			y = (int) (Math.sqrt(r2 - x * x) + 0.5);
		}
		if (x == y) {
			setPixel(pix, xCenter + x, yCenter + y);
			setPixel(pix, xCenter + x, yCenter - y);
			setPixel(pix, xCenter - x, yCenter + y);
			setPixel(pix, xCenter - x, yCenter - y);
		}
	}

	public int[] getAcc() {
		return acc;
	}

}
测试的UI类:

package com.gloomyfish.image.transform.hough;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.io.File;

import javax.imageio.ImageIO;
import javax.swing.BorderFactory;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;

public class HoughUI extends JFrame implements ActionListener, ChangeListener {
	/**
	 * 
	 */
	public static final String CMD_LINE = "Line Detection";
	public static final String CMD_CIRCLE = "Circle Detection";
	private static final long serialVersionUID = 1L;
	private BufferedImage sourceImage;
// 	private BufferedImage houghImage;
	private BufferedImage resultImage;
	private JButton lineBtn;
	private JButton circleBtn;
	private JSlider radiusSlider;
	private JSlider numberSlider;
	public HoughUI(String imagePath)
	{
		super("GloomyFish-Image Process Demo");
		try{
			File file = new File(imagePath);
			sourceImage = ImageIO.read(file);
		} catch(Exception e){
			e.printStackTrace();
		}
		initComponent();
	}
	
	private void initComponent() {
		int RADIUS_MIN = 1;
		int RADIUS_INIT = 1;
		int RADIUS_MAX = 51;
		lineBtn = new JButton(CMD_LINE);
		circleBtn = new JButton(CMD_CIRCLE);
		radiusSlider = new JSlider(JSlider.HORIZONTAL, RADIUS_MIN, RADIUS_MAX, RADIUS_INIT);
		radiusSlider.setMajorTickSpacing(10);
		radiusSlider.setMinorTickSpacing(1);
		radiusSlider.setPaintTicks(true);
		radiusSlider.setPaintLabels(true);
		numberSlider = new JSlider(JSlider.HORIZONTAL, RADIUS_MIN, RADIUS_MAX, RADIUS_INIT);
		numberSlider.setMajorTickSpacing(10);
		numberSlider.setMinorTickSpacing(1);
		numberSlider.setPaintTicks(true);
		numberSlider.setPaintLabels(true);
		
		JPanel sliderPanel = new JPanel();
		sliderPanel.setLayout(new GridLayout(1, 2));
		sliderPanel.setBorder(BorderFactory.createTitledBorder("Settings:"));
		sliderPanel.add(radiusSlider);
		sliderPanel.add(numberSlider);
		JPanel btnPanel = new JPanel();
		btnPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
		btnPanel.add(lineBtn);
		btnPanel.add(circleBtn);
		
		
		JPanel imagePanel = new JPanel(){

			private static final long serialVersionUID = 1L;

			protected void paintComponent(Graphics g) {
				if(sourceImage != null)
				{
					Graphics2D g2 = (Graphics2D) g;
					g2.drawImage(sourceImage, 10, 10, sourceImage.getWidth(), sourceImage.getHeight(),null);
					g2.setPaint(Color.BLUE);
					g2.drawString("原图", 10, sourceImage.getHeight() + 30);
					if(resultImage != null)
					{
						g2.drawImage(resultImage, resultImage.getWidth() + 20, 10, resultImage.getWidth(), resultImage.getHeight(), null);
						g2.drawString("最终结果,红色是检测结果", resultImage.getWidth() + 40, sourceImage.getHeight() + 30);
					}
				}
			}
			
		};
		this.getContentPane().setLayout(new BorderLayout());
		this.getContentPane().add(sliderPanel, BorderLayout.NORTH);
		this.getContentPane().add(btnPanel, BorderLayout.SOUTH);
		this.getContentPane().add(imagePanel, BorderLayout.CENTER);
		
		// setup listener
		this.lineBtn.addActionListener(this);
		this.circleBtn.addActionListener(this);
		this.numberSlider.addChangeListener(this);
		this.radiusSlider.addChangeListener(this);
	}
	
	public static void main(String[] args)
	{
		String filePath = System.getProperty ("user.home") + "/Desktop/" + "zhigang/hough-test.png";
		HoughUI frame = new HoughUI(filePath);
		// HoughUI frame = new HoughUI("D:\\image-test\\lines.png");
		frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		frame.setPreferredSize(new Dimension(800, 600));
		frame.pack();
		frame.setVisible(true);
	}

	@Override
	public void actionPerformed(ActionEvent e) {
		if(e.getActionCommand().equals(CMD_LINE))
		{
			HoughFilter filter = new HoughFilter(HoughFilter.LINE_TYPE);
			resultImage = filter.filter(sourceImage, null);
			this.repaint();
		}
		else if(e.getActionCommand().equals(CMD_CIRCLE))
		{
			HoughFilter filter = new HoughFilter(HoughFilter.CIRCLE_TYPE);
			resultImage = filter.filter(sourceImage, null);
			// resultImage = filter.getHoughSpaceImage(sourceImage, null);
			this.repaint();
		}
		
	}

	@Override
	public void stateChanged(ChangeEvent e) {
		// TODO Auto-generated method stub
		
	}
}
五:霍夫变换检测圆与直线的图像预处理

使用霍夫变换检测圆与直线时候,一定要对图像进行预处理,灰度化以后,提取

图像的边缘使用非最大信号压制得到一个像素宽的边缘, 这个步骤对霍夫变

换非常重要.否则可能导致霍夫变换检测的严重失真.

第一次用Mac发博文,编辑不好请见谅!

目录
相关文章
|
4月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
322 1
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
82 0
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
201 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
4月前
|
机器学习/深度学习 监控 算法
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
80 0
|
7月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
7月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
8月前
|
机器学习/深度学习 人工智能 运维
[ICDE2024]多正常模式感知的频域异常检测算法MACE
[ICDE2024]多正常模式感知的频域异常检测算法MACE
|
7天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
8天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
|
10天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
82 11

热门文章

最新文章