Matlab 优化工具箱演练

简介: 命令:x=linprog(c,A,b) 2、模型:     命令:x=linprog(c,A,b,Aeq,beq) 注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].

clip_image002

命令:x=linprogcAb

2、模型:

clip_image004

  

 命令:x=linprogcAbAeq,beq

注意:若没有不等式:clip_image006存在,则令A=[ ]b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].

3、模型:

clip_image008

 

命令:[1] x=linprogcAbAeq,beq, VLBVUB

      [2] x=linprogcAbAeq,beq, VLBVUB, X0

注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点

4、命令:[x,fval]=linprog(…)

返回最优解x及x处的目标函数值fval.

1  max clip_image010

     clip_image012

           clip_image014

           clip_image016

           clip_image018

                 clip_image020

编写M文件小xxgh1.m如下:

c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];

    A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];

    b=[850;700;100;900];

    Aeq=[]; beq=[];

    vlb=[0;0;0;0;0;0]; vub=[];

[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

x =

 1.0e+004 *

    3.5000

    0.5000

    3.0000

    0.0000

    0.0000

    0.0000

fval =

 -2.5000e+004

 

2   clip_image022

                clip_image024

                         clip_image026

                       clip_image028

                         clip_image030

 

编写M文件xxgh2.m如下:

    c=[6 3 4];

    A=[0 1 0];

    b=[50];

    Aeq=[1 1 1];

    beq=[120];

    vlb=[30,0,20];

    vub=[];            

    [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub

3   (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800900,三种工件的数量分别为400

600500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工

费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使

加工费用最低?

clip_image032 

     设在甲车床上加工工件123的数量分别为x1x2x3,在乙车床上

加工工件123的数量分别为x4x5x6。可建立以下线性规划模型:

clip_image034

    clip_image036

 

 

 

编写M文件xxgh3.m如下:

f = [13 9 10 11 12 8];

A = [0.4 1.1 1 0 0 0

      0 0 0 0.5 1.2 1.3];

b = [800; 900];

Aeq=[1 0 0 1 0 0

     0 1 0 0 1 0

     0 0 1 0 0 1];

beq=[400 600 500];

vlb = zeros(6,1);

vub=[];

[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

 

4.某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25/小时,正确率98%,计时工资4/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?

    设需要一级和二级检验员的人数分别为x1x2,

则应付检验员的工资为:

clip_image038
 

因检验员错检而造成的损失为:

clip_image040
 

 


故目标函数为:

clip_image042
 

 


约束条件为:

clip_image044
 

 

 

 

 


线性规划模型:

clip_image046
 

 


clip_image048      

 

 

 

 

 

编写M文件xxgh4.m如下:

 

c = [40;36];

A=[-5 -3];

b=[-45];

Aeq=[];

beq=[];

vlb = zeros(2,1);

vub=[9;15];

%调用linprog函数:

[x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)

 

结果为:

x =

      9.0000

     0.0000

fval =360

 

即只需聘用9个一级检验员。

 

http://www.cnblogs.com/feisky/archive/2009/10/24/1589218.html

相关文章
|
5天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
6天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
7天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
10 1
|
7天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
19 1
|
7天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
7天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
|
7天前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7天前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
7天前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
7天前
|
调度
Matlab|面向低碳经济运行目标的多微网能量互联优化调度
Matlab|面向低碳经济运行目标的多微网能量互联优化调度

热门文章

最新文章