Matlab 优化工具箱演练

简介: 命令:x=linprog(c,A,b) 2、模型:     命令:x=linprog(c,A,b,Aeq,beq) 注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].

clip_image002

命令:x=linprogcAb

2、模型:

clip_image004

  

 命令:x=linprogcAbAeq,beq

注意:若没有不等式:clip_image006存在,则令A=[ ]b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].

3、模型:

clip_image008

 

命令:[1] x=linprogcAbAeq,beq, VLBVUB

      [2] x=linprogcAbAeq,beq, VLBVUB, X0

注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点

4、命令:[x,fval]=linprog(…)

返回最优解x及x处的目标函数值fval.

1  max clip_image010

     clip_image012

           clip_image014

           clip_image016

           clip_image018

                 clip_image020

编写M文件小xxgh1.m如下:

c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];

    A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];

    b=[850;700;100;900];

    Aeq=[]; beq=[];

    vlb=[0;0;0;0;0;0]; vub=[];

[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

x =

 1.0e+004 *

    3.5000

    0.5000

    3.0000

    0.0000

    0.0000

    0.0000

fval =

 -2.5000e+004

 

2   clip_image022

                clip_image024

                         clip_image026

                       clip_image028

                         clip_image030

 

编写M文件xxgh2.m如下:

    c=[6 3 4];

    A=[0 1 0];

    b=[50];

    Aeq=[1 1 1];

    beq=[120];

    vlb=[30,0,20];

    vub=[];            

    [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub

3   (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800900,三种工件的数量分别为400

600500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工

费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使

加工费用最低?

clip_image032 

     设在甲车床上加工工件123的数量分别为x1x2x3,在乙车床上

加工工件123的数量分别为x4x5x6。可建立以下线性规划模型:

clip_image034

    clip_image036

 

 

 

编写M文件xxgh3.m如下:

f = [13 9 10 11 12 8];

A = [0.4 1.1 1 0 0 0

      0 0 0 0.5 1.2 1.3];

b = [800; 900];

Aeq=[1 0 0 1 0 0

     0 1 0 0 1 0

     0 0 1 0 0 1];

beq=[400 600 500];

vlb = zeros(6,1);

vub=[];

[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

 

4.某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25/小时,正确率98%,计时工资4/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?

    设需要一级和二级检验员的人数分别为x1x2,

则应付检验员的工资为:

clip_image038
 

因检验员错检而造成的损失为:

clip_image040
 

 


故目标函数为:

clip_image042
 

 


约束条件为:

clip_image044
 

 

 

 

 


线性规划模型:

clip_image046
 

 


clip_image048      

 

 

 

 

 

编写M文件xxgh4.m如下:

 

c = [40;36];

A=[-5 -3];

b=[-45];

Aeq=[];

beq=[];

vlb = zeros(2,1);

vub=[9;15];

%调用linprog函数:

[x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)

 

结果为:

x =

      9.0000

     0.0000

fval =360

 

即只需聘用9个一级检验员。

 

http://www.cnblogs.com/feisky/archive/2009/10/24/1589218.html

相关文章
|
2月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
104 24
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
8天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
24天前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
30天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
8天前
|
存储 供应链 数据安全/隐私保护
基于GA遗传优化的风光储微电网削峰填谷能量管理系统matlab仿真
本课题基于MATLAB2022a开发,利用遗传算法(GA)优化风光储微电网的削峰填谷能量管理。系统通过优化风力发电、光伏发电及储能系统的充放电策略,实现电力供需平衡,降低运行成本,提高稳定性与经济效益。仿真结果无水印展示,核心程序涵盖染色体编码、适应度计算、选择、交叉、变异等遗传操作,最终输出优化后的功率分配方案。削峰填谷技术可减少电网压力,提升可再生能源利用率,延长储能设备寿命,为微电网经济高效运行提供支持。
|
8天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。