基于PSO粒子群优化的车间调度问题求解matlab仿真,输出甘特图

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
简介: 基于PSO粒子群优化的MATLAB仿真解决车间调度问题,输入机器与工作完成时间,输出甘特图与收敛图,实现多机器多任务最优并行调度。使用MATLAB 2022a版本运行,通过模拟鸟群觅食行为,不断更新粒子速度与位置寻找最优解,采用工序编码,总加工时间为适应度函数,实现快速收敛并可视化调度结果。

1.程序功能描述
基于PSO粒子群优化的车间调度问题求解matlab仿真,输入不同机器,不同工作的完成时间,输出甘特图,输出收敛图。实现车间多机器,多任务最优并行调度。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

3269b8230e5e8ced768cd63e70f0b42a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
4c1052a1ab47803921f5d539c86be054_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

```for iter = 1: Iters
iter
for i=1:N_pso
%V,X更新
V(i,:) = wV(i,:)+C1rand(Pbest(i,:)-X(i,1:N_all))+C2rand*(Pgbest-X(i,1:N_all));
X(i,1:N_all)= X(i,1:N_all)+V(i,:);

    %更新适应度值
    [G,H]        = sort(X(i,1:N_all));
    tmps         = ceil(H/NJ);
    work_time    = func_work(tmps);
    X(i,N_all+1) = work_time;

    if X(i,N_all+1) < Vbest(i)
       Pbest(i,:)= X(i,1:N_all);
       Vbest(i)  = X(i,1+N_all);
    end
    if Vbest(i) < Vgbest
       Pgbest = Pbest(i,:);
       Vgbest = Vbest(i);
    end

end

VL=[VL,mean(Vbest)];

end

figure;
plot(1:5:Iters,VL(1:5:Iters),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('PSO迭代次数');
ylabel('适应度值优化过程');

figure;
[~,II]= sort(Pgbest);
[Works,Ts,Te]=func_Best_work(ceil(II/NJ));
func_draw_gant(Works,Ts,Te,Vgbest)
10

```

4.本算法原理
粒子群优化算法是一种模拟鸟群觅食行为的优化算法,其基本思想是通过不断更新粒子的速度和位置来搜索最优解。在PSO算法中,每个粒子代表一个可能的解,其位置和速度根据个体极值和全局极值进行更新。个体极值是指粒子自身找到的最优解,全局极值是指整个粒子群找到的最优解。通过不断更新粒子的速度和位置,粒子群逐渐向全局最优解靠近。

     车间调度问题是一类典型的组合优化问题,其目标是在满足各种约束条件的前提下,找到一种最优的生产调度方案,以最小化生产成本、最大化生产效率。粒子群优化(Particle Swarm Optimization,PSO)算法是一种基于群体智能的优化算法,具有收敛速度快、全局搜索能力强等优点,被广泛应用于车间调度问题的求解。

4.1车间调度问题描述
车间调度问题可以描述为:有n个工件需要在m台机器上进行加工,每个工件有一道或多道工序,每道工序可以在一台或多台机器上加工,每台机器在同一时刻只能加工一个工件的一道工序。调度问题的目标是找到一种最优的生产调度方案,使得所有工件的加工时间最短、生产成本最低。

4.2基于PSO的车间调度问题求解方法
编码方式
采用基于工序的编码方式,将每个工件的每道工序看作一个粒子,粒子的位置表示该工序在机器上的加工顺序,粒子的速度表示该工序的加工时间。

适应度函数
适应度函数用于评价粒子的优劣,本文采用总加工时间作为适应度函数。适应度函数的值越小,表示粒子的质量越好。

粒子速度和位置的更新公式
粒子速度和位置的更新公式是PSO算法的核心,本文采用标准PSO算法的更新公式:

v(t+1) = wv(t) + c1rand()(pbest(t)-x(t)) + c2rand()*(gbest(t)-x(t))
x(t+1) = x(t) + v(t+1)

    其中,v(t)和x(t)分别表示粒子在t时刻的速度和位置,pbest(t)和gbest(t)分别表示粒子在t时刻的个体最优位置和全局最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数函数。

4.3 算法流程

(1)初始化粒子群,包括粒子的位置和速度;
(2)计算每个粒子的适应度值;
(3)更新每个粒子的个体最优位置和全局最优位置;
(4)根据粒子速度和位置的更新公式更新粒子的速度和位置;
(5)判断算法是否达到终止条件,如果达到则输出最优解,否则转步骤(2)。

4.4甘特图功能概述
甘特图是一种用于展示项目进度和时间安排的图表可以直观地展示车间调度问题的解决方案。通过输出甘特图可以对基于PSO优化的车间调度问题进行详细的分析和评价。具体实现方法如下:首先根据最优解中的工序加工顺序和加工时间计算出每个工件的开始时间和结束时间然后将这些信息按照时间顺序绘制成甘特图。在甘特图中横轴表示时间纵轴表示机器或工件每个矩形条表示一个工序的开始时间和结束时间矩形条的长度表示加工时间矩形条的颜色可以表示不同的工件或机器。从甘特图中可以清晰地看出各个工序的开始时间、结束时间和持续时间以及各个工序之间的先后关系和并行关系等信息从而方便对调度结果进行分析和评价。

相关文章
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
12天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
12天前
|
存储 供应链 数据安全/隐私保护
基于GA遗传优化的风光储微电网削峰填谷能量管理系统matlab仿真
本课题基于MATLAB2022a开发,利用遗传算法(GA)优化风光储微电网的削峰填谷能量管理。系统通过优化风力发电、光伏发电及储能系统的充放电策略,实现电力供需平衡,降低运行成本,提高稳定性与经济效益。仿真结果无水印展示,核心程序涵盖染色体编码、适应度计算、选择、交叉、变异等遗传操作,最终输出优化后的功率分配方案。削峰填谷技术可减少电网压力,提升可再生能源利用率,延长储能设备寿命,为微电网经济高效运行提供支持。
|
12天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
10月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
418 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
10月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
241 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
10月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
402 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
下一篇
oss创建bucket