简要介绍MongoDB的数据模型

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:
  MongoDB数据是特别灵活的,与SQL数据库相比,它不需要在插入数据前先定义表的结构。MongoDB的集合不强调固定的文档结构。这种灵活性使它能够轻松映射文档结构。每一个文档都可以映射它要表达的对象,即使这些数据有实质性的不同。其实在实际中,同一集合下的文档通常采用相似的结构。


    MongoDB数据建模的主要问题时在应用程序的需求,数据库引擎的性能特性和数据检索模型之间做一个平衡。设计数据模型是,总是要考虑应用程序使用到的数据(查询、更新以及需要处理的数据等等)以及数据结构本身。


    文档结构


    设计MongoDB数据模型的关键是考虑好文档结构和应用程序表示的数据之间的关系。有两种方式可以表达这种关系:引用(references)和嵌入文档(embedded documents)。


    引用(References)


    引用(References)存储数据之间的关系,包括从一个文档链接或引用到另外一个文档。这样应用程序就解决了访问关联数据的问题,一般来说,这些都是规范数据的数据模型。

spacer.gif

wKioL1QAWFiTWWz0AAFgg2BYmHY300.jpg

    Embedded Data

    嵌入式文档通过存储相关的数据在一个文档结构中来捕获数据之间的关系。MongoDB文档可以在当前文档的字段或数组中嵌入文档作为子文档。这些非规范化数据模型允许应用程序检索和操作相关的数据在一个单一的数据库操作。


spacer.gif

wKiom1QAV1biJbDMAAEoysOwgs8971.jpg

    写操作的原子性


    在MongoDB中,写操作的原子性限制在文档级别,没有一个写操作可以自动影响到多个文档或多个集合。规范化的嵌入式数据模型整合了所有的关联数据在一个文档中来展现实体。这有助于原子写操作在一个写操作中插入和更新实体的数据。规范化数据能够分隔多个集合的数据并且需要在非原子性操作中需要多个写操作。


    然后,促进原子写的模式可能限制应用程序使用数据,也可能限制修改应用程序的方法。原子性考虑设计模式的挑战,平衡灵活性和原子性。


    文档增加


    像添加元素到数组或者增加新字段这样的更新,会增加文档的大小。如果文档的大小超过了为该文档分配空间,MongoDB会重新分配磁盘空间。考虑到空间的增加,应该规范化或使用规范的数据。


    数据使用和性能


    当设计数据模型的时候,应考虑应用程序如何使用数据库。比如,如果应用程序仅使用最近插入的文档,考虑使用顶端集合(Capped Collections)。如果应用程序需要频繁的读取集合,添加索引能够提高数据查询效率。





本文转自 genuinecx 51CTO博客,原文链接:http://blog.51cto.com/favccxx/1546655,如需转载请自行联系原作者
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
6月前
|
存储 NoSQL MongoDB
MongoDB 集合创建指南:命名规范、索引优化和数据模型设计
MongoDB 集合创建指南:命名规范、索引优化和数据模型设计
138 0
|
7月前
|
存储 NoSQL MongoDB
MongoDB数据模型与文档结构详解
【4月更文挑战第30天】MongoDB是一个基于文档的NoSQL数据库,其数据模型由文档(类似键值对集合,支持嵌套和数组)、集合(无需预定义结构的文档组)和数据库(包含集合的组织单元)构成。文档使用BSON格式,支持多种数据类型。在设计数据模型时,应注意避免过度嵌套,利用索引优化查询,并考虑数据生命周期。MongoDB通过引用处理文档间关系,提供灵活性以适应复杂数据结构。
|
7月前
|
存储 NoSQL JavaScript
【待完善】MongoDB - 数据模型
【待完善】MongoDB - 数据模型
138 0
|
存储 JSON NoSQL
MongoDB 简介&体系结构&数据模型& | 学习笔记
快速学习 MongoDB简介&体系结构&数据模型&
181 0
MongoDB 简介&体系结构&数据模型& | 学习笔记
|
2月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
5天前
|
存储 JSON NoSQL
学习 MongoDB:打开强大的数据库技术大门
MongoDB 是一个基于分布式文件存储的文档数据库,由 C++ 编写,旨在为 Web 应用提供可扩展的高性能数据存储解决方案。它与 MySQL 类似,但使用文档结构而非表结构。核心概念包括:数据库(Database)、集合(Collection)、文档(Document)和字段(Field)。MongoDB 使用 BSON 格式存储数据,支持多种数据类型,如字符串、整数、数组等,并通过二进制编码实现高效存储和传输。BSON 文档结构类似 JSON,但更紧凑,适合网络传输。
31 15
|
13天前
|
存储 NoSQL 关系型数据库
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
我们的风控系统引入阿里云数据库MongoDB版后,解决了特征类字段灵活加减的问题,大大提高了开发效率,极大的提升了业务用户体验,获得了非常好的效果
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
|
1月前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。