用MATLAB优化工具箱解线性规划

简介:

clip_image002

命令:x=linprogcAb

2、模型:

clip_image004

  

  命令:x=linprogcAbAeq,beq

注意:若没有不等式:clip_image006存在,则令A=[ ]b=[ ]. 若没有等式约束则令Aeq=[ ], beq=[ ].

3、模型:

clip_image008

 

命令:[1] x=linprogcAbAeq,beq, VLBVUB

      [2] x=linprogcAbAeq,beq, VLBVUB, X0

注意:[1] 若没有等式约束则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点

4、命令:[x,fval]=linprog(…)

返回最优解x及x处的目标函数值fval.

 max  clip_image010

     clip_image012

           clip_image014

           clip_image016

           clip_image018

                 clip_image020

 编写M文件小xxgh1.m如下:

c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];

    A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];

    b=[850;700;100;900];

    Aeq=[]; beq=[];

    vlb=[0;0;0;0;0;0]; vub=[];

[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

x =

  1.0e+004 *

    3.5000

    0.5000

    3.0000

    0.0000

    0.0000

    0.0000

fval =

 -2.5000e+004

 

2   clip_image022

                clip_image024

                         clip_image026

                       clip_image028

                         clip_image030

 

:  编写M文件xxgh2.m如下:

    c=[6 3 4];

    A=[0 1 0];

    b=[50];

    Aeq=[1 1 1];

    beq=[120];

    vlb=[30,0,20];

    vub=[];            

    [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub

3   (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800900,三种工件的数量分别为400

600500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工

费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使

加工费用最低?

clip_image032 

     设在甲车床上加工工件123的数量分别为x1x2x3,在乙车床上

加工工件123的数量分别为x4x5x6。可建立以下线性规划模型:

clip_image034

    clip_image036

 

 

 

编写M文件xxgh3.m如下:

f = [13 9 10 11 12 8];

A =  [0.4 1.1 1 0 0 0

      0 0 0 0.5 1.2 1.3];

b = [800; 900];

Aeq=[1 0 0 1 0 0

     0 1 0 0 1 0

     0 0 1 0 0 1];

beq=[400 600 500];

vlb = zeros(6,1);

vub=[];

[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

 

4.某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25/小时,正确率98%,计时工资4/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?

    设需要一级和二级检验员的人数分别为x1x2,

则应付检验员的工资为:

clip_image038
 


因检验员错检而造成的损失为:

clip_image040
 

 


故目标函数为:

clip_image042
 

 


约束条件为:

clip_image044
 

 

 

 

 


线性规划模型:

clip_image046
 

 


clip_image048      

 

 

 

 

 

编写M文件xxgh4.m如下:

 

c = [40;36];

A=[-5 -3];

b=[-45];

Aeq=[];

beq=[];

vlb = zeros(2,1);

vub=[9;15];

%调用linprog函数:

[x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)

 

结果为:

x =

      9.0000

      0.0000

fval =360

 

即只需聘用9个一级检验员。


本文转自feisky博客园博客,原文链接:http://www.cnblogs.com/feisky/archive/2009/10/24/1589218.html,如需转载请自行联系原作者


相关文章
|
22天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
157 80
|
10天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
2天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
8天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
7天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
18天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
15天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
18天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章