以下内容根据演讲PPT及现场分享整理:
正在发生的变革:人工智能正在重构B-C的关系模式
第一代企业与消费者关系模式是销售。其商业模式是生产出产品后直接销售。销售后,企业与消费者之间的连接就截断了。
第二代企业与消费者关系模式是单向连接。商品从企业销售到消费者手中,企业会想办法保持与消费者的连接,如企业公众号。问题是企业与消费者之间关系是单向的,没有自然语言的双向交互。
第三代的企业与消费者关系模式是双向交互。交互平台需要为企业提供自然交互式的准确、全链条服务平台。为消费者打造7*24h、自然交互服务体验。
第三代B-C模式优势在于:全链条服务平台,智能化客户体验,通过营销创收;并且有多轮交互。智能客服强在售后服务,节约成本,可以简单回答问题。
小蜜家族已经武装了阿里内外平台。
云小蜜开放平台及其核心引擎
云小蜜定位为包含对话机器人开放平台和机器人+人协同工作台的面向企业或组织的新一代智能服务整体解决方案。
云小蜜开放平台和核心技术体现在语言理解引擎、Task对话引擎和智能问答引擎。
语言理解引擎
其中语言理解引擎的设计痛点考虑为启动简单、理解准确和越用越智能。通过内置丰富意图和实体、挂链推荐实体和例句实现多内置多推荐;通过基于规则算法、传统机器学习、深度学习算法实现强大学习算法;通过数据闭环流动和Active learning来实现持续学习闭环。
上图为各种常用内置意图。
通过内置100+实体和与之相连的对应规则贯穿知识基础。
通过内置符主义与神经网络融合的意图识别算法去实现深度学习的意图识别。
通过Bi-LSTM+CRF的slot filing算法实现深度学习的Slot属性抽取。
客户自定义意图的识别主要通过冷启动similarity matching技术和grammar技术来实现。
通过提炼数据中关键词,经过数据预处理达到语义匹配,去重后设置回流样本并标注,达到模型训练后进行模型验证,得出新模型。通过这种方式实现持续学习和进化能力。
Task对话引擎
客户期待业务领域扩展快一些;用户对话自由一点;能支持稍微复杂一些的业务流程。但是设置系统的时候面对各行业各业务都有自己的业务逻辑,扩展难度大;当用户不严格按照流程对话时,容易异常跳出,导致业务无法顺利完成;一个Task通常存在多种分支和跳转逻辑,简单的slot filling难以应对。
目前通过核心引擎和业务逻辑分离,方便在不同企业、不同行业、不同Task扩展实现可扩展性;通过支持Task之间的跳转与恢复,支持各种异常处理和验证来实现鲁棒性;通过以Graph为出发点构建对话流程,支持复杂业务对话逻辑的自由流转,同时支持客自定义功能来实现可定制性。
在对话的可扩展性方面,核心引擎设计思路为解析和执行Task Flow,以状态机的形式,控制每一轮对话交互。业务逻辑设计思路为Task Flow描述具体任务的执行步骤以及流转关系。
在对话的鲁棒性方面,业务方设计思路为自定义Task内部逻辑。平台设计思路为支持Task之间的跳转与恢复。
对话的可定制性的业务流程图和细化图如上图。
Bot Framework框架的流转示意图如上。
智能问答引擎
KB-QA是知识库问答(knowledge base question answering)即给定自然语言问题,通过对问题进行语义理解和解析,进而利用知识库进行查询、推理得出答案。划分为精准回答、多轮回答和支持推理。
行业知识图谱实例如上。
问题经过3种约束条件识别问题,确定问题是否在模型以内,在模型内的问题,进过问题曲线标记,推荐出最符合的问题曲线,执行查询并回答;不在曲线内的问题,进行反问。以上是KBQA框架的基本原理。
传统方案,对话和问答是割裂的;云小蜜中对话和问答有机而统一地紧密连接。
云小蜜的平台的核心价值在于通过整合行业结构化知识启动成本更低;通过自主制定能力使业务更灵活;通过持续学习进化使体验更智能。
云小蜜未来的思考
云小蜜将以开放、共赢和生态的角度进行发展,未来将扩散到各行各业。
本文由云栖社区志愿者小组王晓慧整理,丁匀泰审校。编辑:郭雪梅。