C5.0算法学习

简介: C5.0是决策树模型中的算法,79年由J R Quinlan发展,并提出了ID3算法,主要针对离散型属性数据,其后又不断的改进,形成C4.5,它在ID3基础上增加了队连续属性的离散化。C5.0是C4.5应用于大数据集上的分类算法,主要在执行效率和内存使用方面进行了改进。


 

C5.0是决策树模型中的算法,79年由J R Quinlan发展,并提出了ID3算法,主要针对离散型属性数据,其后又不断的改进,形成C4.5,它在ID3基础上增加了队连续属性的离散化。C5.0是C4.5应用于大数据集上的分类算法,主要在执行效率和内存使用方面进行了改进。

C4.5算法是ID3算法的修订版,采用GainRatio来加以改进方法,选取有最大GainRatio的分割变量作为准则,避免ID3算法过度配适的问题。

C5.0算法则是C4.5算法的修订版,适用于处理大数据集,采用Boosting方式提高模型准确率,又称为BoostingTrees,在软件上计算速度比较快,占用的内存资源较少。

决策树模型,也称规则推理模型。通过对训练样本的学习,建立分类规则;依据分类规则,实现对新样本的分类;属于有指导(监督)式的学习方法,有两类变量:目标变量(输出变量),属性变量(输入变量)。

决策树模型与一般统计分类模型的主要区别:决策树的分类是基于逻辑的,一般统计分类模型是基于非逻辑的。

常见的算法有CHAID、CART、Quest和C5.0。对于每一个决策要求分成的组之间的“差异”最大。各种决策树算法之间的主要区别就是对这个“差异”衡量方式的区别。

决策树很擅长处理非数值型数据,这与神经网络智能处理数值型数据比较而言,就免去了很多数据预处理工作。

C5.0是经典的决策树模型算法之一,可生成多分支的决策树,目标变量为分类变量,使用C5.0算法可以生成决策树或者规则集。C5.0模型根据能偶带来的最大信息增益的字段拆分样本。第一次拆分确定的样本子集随后再次拆分,通常是根据另一个字段进行拆分,这一过程重复进行指导样本子集不能在被拆分为止。最后,重新缉拿眼最低层次的拆分,哪些对模型值没有显著贡献的样本子集被提出或者修剪。

C5.0优点:

C5.0模型在面对数据遗漏和输入字段很多的问题时非常稳健;

C5.0模型比一些其他类型的模型易于理解,模型退出的规则有非常直观的解释;

C5.0也提供强大技术以提高分类的精度。

C5.0算法

C5.0算法选择分支变量的依据:以信息熵的下降速度作为确定最佳分支变量和分割阀值的依据。信息熵的下降意味着信息的不确定性下降。

信息熵:信息量的数学期望,是心愿发出信息前的平均不确定性,也称先验熵。

           信息ui(i=1,2,…r)的发生概率P(ui)组成信源数学模型,å P(ui)1;

              信息量(单位是bit,对的底数取2)

                                     

        信息熵:先验不确定性:

                                 

信息熵H(U)的性质
 
H(U)=0时,表示只存在唯一的可能性,不存在不确定性
如果信源的k个信号有相同的发出概率,即所有的uiP(ui)=1/kH(U)达到最大,不确定性最大
       • P( u i ) 差别越小, H ( U ) 就越大; P( u i ) 差别大, H ( U ) 就越小

         决策树中熵的应用:

         设S是一个样本集合,目标变量C有K个分类,freq(Ci,S)表示属于Ci类的样本数,|S|表示样本几何S的样本数。则几何S的信息熵定义为:

                                

             如果某属性变量T,有N个分类,则属性变量T引入后的条件熵定义为:

                                

             属性变量T带来的信息增益为:

                                  

C5.0算法示例:

该组样本的熵:

关于T1的条件熵为:

T1带来的信息增益为:

 

 

 

 

 

 

 
 
 

相关文章
|
3月前
|
机器学习/深度学习 数据采集 搜索推荐
Paper Digest | 突破个性化推荐数据稀疏性:长尾增强的图对比学习算法研究
本文提出了一种新的长尾增强的图对比学习方法(LAGCL),该方法促使模型同时兼顾头部节点与尾部节点之间的知识,并通过长尾增强技术来使模型产出更均匀更准确的节点表征,从而改进基于 GNN 的推荐任务。
|
3月前
|
算法 网络协议 Linux
【Cisco Packet Tracer】交换机的自学习算法
【Cisco Packet Tracer】交换机的自学习算法
59 0
|
4月前
|
机器学习/深度学习 算法
机器学习 - [集成学习]Bagging算法的编程实现
机器学习 - [集成学习]Bagging算法的编程实现
37 1
|
1天前
|
机器学习/深度学习 算法
应用规则学习算法识别有毒的蘑菇
应用规则学习算法识别有毒的蘑菇
|
12天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】关联规则学习:Apriori算法详解
【4月更文挑战第30天】Apriori算法是一种用于关联规则学习的经典算法,尤其适用于购物篮分析,以发现商品间的购买关联。该算法基于支持度和置信度指标,通过迭代生成频繁项集并提取满足阈值的规则。Python中可借助mlxtend库实现Apriori,例如处理购物篮数据,设置支持度和置信度阈值,找出相关规则。
|
12天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】集成学习算法的原理与应用
【4月更文挑战第30天】集成学习通过组合多个基学习器提升预测准确性,广泛应用于分类、回归等问题。主要步骤包括生成基学习器、训练和结合预测结果。算法类型有Bagging(如随机森林)、Boosting(如AdaBoost)和Stacking。Python中可使用scikit-learn实现,如示例代码展示的随机森林分类。集成学习能降低模型方差,缓解过拟合,提高预测性能。
|
25天前
|
机器学习/深度学习 算法 前端开发
Scikit-learn进阶:探索集成学习算法
【4月更文挑战第17天】本文介绍了Scikit-learn中的集成学习算法,包括Bagging(如RandomForest)、Boosting(AdaBoost、GradientBoosting)和Stacking。通过结合多个学习器,集成学习能提高模型性能,减少偏差和方差。文中展示了如何使用Scikit-learn实现这些算法,并提供示例代码,帮助读者理解和应用集成学习提升模型预测准确性。
|
25天前
|
机器学习/深度学习 算法 Python
使用Python实现集成学习算法:Bagging与Boosting
使用Python实现集成学习算法:Bagging与Boosting
22 0
|
26天前
|
算法 安全 数据可视化
python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析
python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析
|
1月前
|
算法
【算法学习--字符串】(不含KMP算法)
【算法学习--字符串】(不含KMP算法)