应用规则学习算法识别有毒的蘑菇

简介: 应用规则学习算法识别有毒的蘑菇

1 目的

  应用规则学习算法识别有毒的蘑菇

2 数据来源

  该演示数据来源于: 机器学习和智能系统中心

3 案例演示

3.1 探索数据

3.1.1 读取数据并查看数据类型

  运行代码:

data1<-read.csv("G:\\机器学习\\第三次作业\\mushrooms.csv",stringsAsFactors=T)
str(data1$veil_type)  #查看数据类型

  结果展示:

##  Factor w/ 1 level "partial": 1 1 1 1 1 1 1 1 1 1 ...

   通过运行结果我们可以看到数据集veil_type列数据类型为因子型。

3.1.2 查看蘑菇数据情况

  运行代码:

data1$veil_type<-NULL #删除“veil_type”变量
table(data1$type)     #查看有毒蘑菇比例
prop.table(table(data1$type))

  结果展示:

> table(data1$type)     #查看有毒蘑菇比例
##    edible poisonous 
##      4208      3916
> prop.table(table(data1$type))
##    edible poisonous 
## 0.5179714 0.4820286

  根据运行结果显示,数据样本中大约有52%的蘑菇样本(4208个)是可食用的;有48%的蘑菇样本(3916个)是有毒的。

3.2 模型的建立及优化

3.2.1 基于数据训练模型

  运行代码:

library("RWeka")#加载包
data1_1R<-OneR(type~.,data=data1)  #1R规则
data1_1R

  结果展示:

## odor:
##  almond  -> edible
##  anise   -> edible
##  creosote    -> poisonous
##  fishy   -> poisonous
##  foul    -> poisonous
##  musty   -> poisonous
##  none    -> edible
##  pungent -> poisonous
##  spicy   -> poisonous
## (8004/8124 instances correct)

  利用单规则算法可以发现该分类器中,odor(气味)被选为规则,该规则正确地预测了8124个蘑菇样本中的8004个样本的可食性。

3.2.2 评估模型性能

  运行代码:

summary(data1_1R) #模型性能

  运行展示:

## 
## === Summary ===
## 
## Correctly Classified Instances        8004               98.5229 %
## Incorrectly Classified Instances       120                1.4771 %
## Kappa statistic                          0.9704
## Mean absolute error                      0.0148
## Root mean squared error                  0.1215
## Relative absolute error                  2.958  %
## Root relative squared error             24.323  %
## Total Number of Instances             8124     
## 
## === Confusion Matrix ===
## 
##     a    b   <-- classified as
##  4208    0 |    a = edible
##   120 3796 |    b = poisonous

  根据结果显示,样本蘑菇中有120个有毒蘑菇被错误的分类为可食用蘑菇;4208个可食用蘑菇被正确分类为可食用蘑菇;3796个有毒蘑菇被正确分类为有毒蘑菇,模型的准确率高达99%。

3.2.3 评估模型性能

  使用RIPPER优化模型。

  运行代码:

data1_JRip<-JRip(type~.,data=data1)
data1_JRip           #提高性能
summary(data1_JRip)  #模型性能

  结果展示:

> data1_JRip           #提高性能
## JRIP rules:
## ===========
## 
## (odor = foul) => type=poisonous (2160.0/0.0)
## (gill_size = narrow) and (gill_color = buff) => type=poisonous (1152.0/0.0)
## (gill_size = narrow) and (odor = pungent) => type=poisonous (256.0/0.0)
## (odor = creosote) => type=poisonous (192.0/0.0)
## (spore_print_color = green) => type=poisonous (72.0/0.0)
## (stalk_surface_below_ring = scaly) and (stalk_surface_above_ring = silky) => type=poisonous (68.0/0.0)
## (habitat = leaves) and (cap_color = white) => type=poisonous (8.0/0.0)
## (stalk_color_above_ring = yellow) => type=poisonous (8.0/0.0)
##  => type=edible (4208.0/0.0)
## 
## Number of Rules : 9
> summary(data1_JRip)  #模型性能
## === Summary ===
## 
## Correctly Classified Instances        8124              100      %
## Incorrectly Classified Instances         0                0      %
## Kappa statistic                          1     
## Mean absolute error                      0     
## Root mean squared error                  0     
## Relative absolute error                  0      %
## Root relative squared error              0      %
## Total Number of Instances             8124     
## 
## === Confusion Matrix ===
## 
##     a    b   <-- classified as
##  4208    0 |    a = edible
##     0 3916 |    b = poisonous

  利用RIPPER规则学习算法提高模型性能,此分类器共创建9条规则,模型预测准确率达100%。

目录
打赏
0
1
1
0
30
分享
相关文章
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
102 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
24 3
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
44 12
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
47 9
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
350 11
架构学习:7种负载均衡算法策略
|
7天前
|
探讨组合加密算法在IM中的应用
本文深入分析了即时通信(IM)系统中所面临的各种安全问题,综合利用对称加密算法(DES算法)、公开密钥算法(RSA算法)和Hash算法(MD5)的优点,探讨组合加密算法在即时通信中的应用。
14 0
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
82 0
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
89 1

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等