python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析

简介: python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析

产品可以根据销售者进行分类

在Evolution上,有一些顶级类别(“药品”,“数字商品”,“欺诈相关”等)细分为特定于产品的页面。每个页面包含不同供应商的几个列表。

我根据供应商同现关系在产品之间建立了一个图表,即每个节点对应于一种产品,其边权重由同时出售两种事件产品的供应商数量定义。因此,举例来说,如果有3个供应商同时出售甲斯卡林和4-AcO-DMT,那么我的图在甲斯卡林和4-AcO-DMT节点之间的权重为3。我使用 基于随机块模型的分层边缘 实现来


生成以下Evolution产品网络的可视化:

代码片段

importimport  pandaspandas  asas  pdpd
importimport  graph_toolgraph_t  as gt
import graph_tool.draw
import graph_tool.community
import itertools
import collections
import matplotlib
import math
In [2]:
 
gt.draw.graph_draw(g, pos=pos, vertex_fill_color=b,
            edge_control_points=cts,
            vertex_size=20,
            vertex_text=g.vertex_properties['label'],
            vertex_text_rotation=g.vertex_properties['text_rot'],
            vertex_text_position=1,
            vertex_font_size=20,
            vertex_font_family='mono',
            vertex_anchor=0,
            vertex_color=b,
            vcmap=matplotlib.cm.Spectral,
            ecmap=matplotlib.cm.Spectral,
            edge_color=g.edge_properties['color'],
            bg_color=[0,0,0,1],
            output_size=[1024*2,1024*2],
            output='/home/aahu/Desktop/evo_nvends={0}.png'.format(MIN_SHARED_VENDORS))
saving to disk...


它包含73个节点和2,219个边缘(我在数据中找到了3,785个供应商)。

代码片段:


# coding: utf-8

from bs4 import BeautifulSoup
import re
import pandas as pd
import dateutil
import os

import logging
 

def main():
    for datestr in os.listdir(DATA_DIR):
        d1 = os.path.join(DATA_DIR, datestr)
        fdate = dateutil.parser.parse(datestr)
        catdir = os.path.join(d1,'category')
        if os.path.exists(catdir):
            logger.info(catdir)
            df = catdir_to_df(catdir, fdate)
            outname ='category_df_'+datestr+'.tsv'
            df.to_csv(os.path.join(DATA_DIR,outname),'\t',index=False)


if __name__=='__main__':
    main()

权重较高的边缘绘制得更明亮。节点使用随机块模型进行聚类,并且同一聚类中的节点被分配相同的颜色。图的上半部分(对应于毒品)和下半部分(对应于非毒品,即武器/黑客/信用卡/等)之间有明显的分界。这表明销售毒品的供应商销售非毒品的可能性较小,反之亦然。


91.7%的出售速度

关联规则学习是解决市场篮子分析问题的一种直接且流行的方法。传统的应用是根据其他顾客的购物车向购物者推荐商品。由于某些原因,典型的例子是“购买尿布的顾客也购买啤酒”。

我们没有来自Evolution上公开帖子的抓取的客户数据。但是,我们确实拥有每个供应商所销售产品的数据,可以帮助我们量化上述视觉分析所建议的结果。

这是我们的数据库的示例(完整的文件有3,785行(每个供应商一个)):


Vendor Products
MrHolland [‘Cocaine’, ‘Cannabis’, ‘Stimulants’, ‘Hash’]
Packstation24 [‘Accounts’, ‘Benzos’, ‘IDs & Passports’, ‘SIM Cards’, ‘Fraud’]
Spinifex [‘Benzos’, ‘Cannabis’, ‘Cocaine’, ‘Stimulants’, ‘Prescription’, ‘Sildenafil Citrate’]
OzVendor [‘Software’, ‘Erotica’, ‘Dumps’, ‘E-Books’, ‘Fraud’]
OzzyDealsDirect [‘Cannabis’, ‘Seeds’, ‘MDMA’, ‘Weed’]
TatyThai [‘Accounts’, ‘Documents & Data’, ‘IDs & Passports’, ‘Paypal’, ‘CC & CVV’]
PEA_King [‘Mescaline’, ‘Stimulants’, ‘Meth’, ‘Psychedelics’]
PROAMFETAMINE [‘MDMA’, ‘Speed’, ‘Stimulants’, ‘Ecstasy’, ‘Pills’]
ParrotFish [‘Weight Loss’, ‘Stimulants’, ‘Prescription’, ‘Ecstasy’]


关联规则挖掘是计算机科学中的一个巨大领域–在过去的二十年中,已经发表了数百篇论文。

我运行的FP-Growth算法的最小允许支持为40,最小允许置信度为0.1。该算法学习了12,364条规则。


规则前项 后项 支持度 置信度
[‘Speed’, ‘MDMA’] [‘Ecstasy’] 155 0.91716
[‘Ecstasy’, ‘Stimulants’] [‘MDMA’] 310 0.768
[‘Speed’, ‘Weed’, ‘Stimulants’] [‘Cannabis’, ‘Ecstasy’] 68 0.623
[‘Fraud’, ‘Hacking’] [‘Accounts’] 53 0.623
[‘Fraud’, ‘CC & CVV’, ‘Accounts’] [‘Paypal’] 43 0.492
[‘Documents & Data’] [‘Accounts’] 139 0.492
[‘Guns’] [‘Weapons’] 72 0.98
[‘Weapons’] [‘Guns’] 72 0.40
相关文章
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
11天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。

热门文章

最新文章

推荐镜像

更多