函数 $f(x)$ 在 $[0,1]$ 上单调减, 证明: 对于任何 $\al\in (0,1)$, $$\bex \int_0^\al f(x)\rd x\geq \al \int_0^1 f(x)\rd x. \eex$$
证明: 设 $$\bex F(x)=\cfrac{\int_0^\al f(x)\rd x}{\al}, \eex$$ 则 $$\bex F'(x)=\cfrac{f(\al)\al-\int_0^\al f(x)\rd x}{\al^2} =\cfrac{\int_0^\al [f(\al)-f(x)]\rd x}{\al^2}\leq 0. \eex$$ 于是 $$\bex F(\al)\geq F(1)=\int_0^1 f(x)\rd x,\quad 0<\al<1. \eex$$