2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!

欢迎各位彦祖与热巴畅游本人专栏与博客

你的三连是我最大的动力

以下图片仅代表专栏特色 [点击箭头指向的专栏名即可闪现]

专栏跑道一

➡️网络空间安全——全栈前沿技术持续深入学习

image.gif

专栏跑道二

➡️ 24 Network Security -LJS

image.gif

image.gif

image.gif

专栏跑道三


➡️ MYSQL REDIS Advance operation

image.gif

专栏跑道四

➡️HCIP;H3C-SE;CCIP——LJS[华为、华三、思科高级网络]

image.gif

专栏跑道五

➡️RHCE-LJS[Linux高端骚操作实战篇]

image.png

专栏跑道六

➡️数据结构与算法[考研+实际工作应用+C程序设计]

image.gif

专栏跑道七

➡️RHCSA-LJS[Linux初级及进阶骚技能]

image.gif

image.gif

上节回顾







回溯数据结构与算法系列学习之栈和队列精题汇总

(1)题目:设计一个递归算法,删除不带头结点的单链表L 中所有值为 x 的结点。

解题思路:

>利用递归,不断将节点的下个节点传入函数
>每个函数执行对应删除操作
image.gif

实现代码:

#include <iostream>
using namespace std;
// 定义链表节点结构体
typedef struct LNode
{
    int data;          // 节点数据
    struct LNode *next; // 指向下一个节点的指针
} LNode, *LinkList;     // LinkList 是指向 LNode 的指针类型
// 头插法插入节点
void HeadInsert(LinkList &L)
{
    int val = 0; // 用于存储用户输入的值
    while (cin >> val) // 循环读取输入的值
    {
        LNode *s = new LNode; // 创建新节点
        s->data = val;        // 将输入的值赋给新节点
        s->next = L->next;   // 新节点的下一个指针指向当前链表的第一个节点
        L->next = s;         // 链表头指针的下一个指针指向新节点
        if (cin.get() == '\n') // 检查是否读取到换行符
        {
            break; // 如果是换行符,结束输入
        }
    }
}
// 尾插法插入节点
void TailInsert(LinkList &L)
{
    int val = 0; // 用于存储用户输入的值
    LNode *r = L; // r指向链表的尾部
    while (cin >> val) // 循环读取输入的值
    {
        LNode *s = new LNode; // 创建新节点
        s->data = val;        // 将输入的值赋给新节点
        r->next = s;         // 当前尾节点的下一个指针指向新节点
        r = s;               // 更新尾指针为新节点
        r->next = NULL;      // 新节点的下一个指针设为NULL
        if (cin.get() == '\n') // 检查是否读取到换行符
        {
            break; // 如果是换行符,结束输入
        }
    }
}
// 遍历输出链表元素
void Print(LinkList L)
{
    LNode *p = L->next; // 从链表的第一个节点开始遍历
    while (p) // 当当前节点不为空时
    {
        cout << p->data << '\t'; // 输出当前节点的数据
        p = p->next; // 移动到下一个节点
    }
    cout << endl; // 输出换行
}
// 删除链表中所有值为 x 的节点
void DelValue(LinkList &L, int x)
{
    if (L == NULL) // 如果链表为空,直接返回
    {
        return;
    }
    LNode *p; // 用于保存待删除的节点
    // 如果头节点的值等于 x
    if (L->data == x)
    {
        p = L; // 保存当前节点
        L = L->next; // 头指针指向下一个节点
        delete p; // 删除当前节点
        DelValue(L, x); // 递归调用删除函数
    }
    else
    {
        DelValue(L->next, x); // 否则继续递归检查下一个节点
    }
}
int main()
{
    LinkList L = new LNode; // 创建一个新的链表头节点
    TailInsert(L); // 尾插法插入节点
    DelValue(L, 2); // 删除链表中所有值为 2 的节点
    Print(L); // 打印链表中的节点
}
image.gif

image.gif 编辑

(2)题目:通过C++实现链栈Q ChainStack

实现代码:

#include <iostream>
using namespace std;
// 定义每个节点结构
typedef struct Node
{
    int data;           // 节点数据
    struct Node *next;  // 指向下一个节点的指针
} Node;
// 定义链栈结构
typedef struct
{
    Node *top;         // 栈顶指针
    int size;          // 栈中元素数量
} ChainStack;
// 将元素v压入栈中
void Push(ChainStack &s, int v)
{
    /***********************************
     * description: 将元素v压入栈中
     * input: 
     *     @s: 链栈结构 
     *     @v: 待压入的值 
     * return: 
     ***********************************/
    
    Node *p = new Node; // 创建一个新节点
    p->data = v;        // 设置节点的数据
    p->next = s.top->next; // 新节点指向当前栈顶的下一个节点
    s.top->next = p;    // 更新栈顶指针,指向新节点
    s.size++;           // 增加栈的大小
}
// 判断链栈是否为空
bool IsEmpty(ChainStack s)
{
    /***********************************
     * description: 判断链栈是否为空
     * input: 
     *     @s: 链栈结构 
     * return: 
     ***********************************/
    
    if (s.top->next) // 如果栈顶的下一个节点不为空
    {
        return false; // 栈不为空
    }
    return true; // 否则栈为空
}
// 将栈顶元素弹出
void Pop(ChainStack &s)
{
    /***********************************
     * description: 将栈顶元素弹出
     * input: 
     *     @s: 链栈结构 
     * return: 
     ***********************************/
    
    if (IsEmpty(s)) // 如果栈为空,无法弹出
    {
        return;
    }
    Node *p = s.top->next; // 保存当前栈顶节点
    s.top->next = p->next; // 栈顶指针移向下一个节点
    delete p; // 释放栈顶元素节点空间
    s.size--; // 减少栈的大小
}
// 获取栈顶元素
int GetTop(ChainStack s)
{
    /***********************************
     * description: 获取栈顶元素
     * input: 
     *     @s: 链栈 
     * return: 
     ***********************************/
    
    if (IsEmpty(s)) // 如果栈为空
    {
        return -1; // 返回-1表示无栈顶元素
    }
    return s.top->next->data; // 返回栈顶节点的数据
}
// 获取栈中元素数量
int GetSize(ChainStack s)
{
    /***********************************
     * description: 获取栈中元素数量
     * input: 
     *     @s: 链栈 
     * return: 
     ***********************************/
    
    return s.size; // 返回栈的大小
}
// 初始化一个链栈
ChainStack *InitStack()
{
    /***********************************
     * description: 初始化一个链栈
     * input: 
     * return: 返回一个初始化好的链栈指针 
     ***********************************/
    
    ChainStack *s = new ChainStack; // 创建新的链栈
    s->top = new Node; // 创建栈顶节点
    s->top->next = nullptr; // 栈顶节点的下一个指针初始化为nullptr
    s->size = 0; // 初始化栈大小为0
    return s; // 返回初始化好的链栈
}
int main()
{
    ChainStack *s = InitStack(); // 初始化链栈
    Push(*s, 5); // 压入元素5
    Push(*s, 4); // 压入元素4
    Push(*s, 3); // 压入元素3
    Push(*s, 2); // 压入元素2
    cout << GetSize(*s) << endl; // 输出栈的大小
    cout << GetTop(*s) << endl; // 输出栈顶元素
    Pop(*s); // 弹出栈顶元素
    cout << GetTop(*s) << endl; // 再次输出栈顶元素
}
image.gif

运行截图:

image.gif 编辑

(3)题目:栈的应用Q——实现括号匹配利用栈实现括号匹配C、C++完整实现(可直接运行)

解题思路:

>遇到左括号将其压入栈中
>当遇到右括号,则判断此时栈是否为空
>如果是空栈,则不匹配
>如果非空,则弹出栈顶元素,与当前右括号进行匹配
>如果不对应,则不匹配
>最后,如果栈为空,则表示括号匹配
>不空表示有多余括号,则不匹配
image.gif

实现代码:

#include <iostream>
using namespace std;
#define MAXSIZE 100 // 定义栈的最大容量
// 定义栈结构
typedef struct
{
    char data[MAXSIZE]; // 存储栈中元素的数组
    int top1 = -1;      // 栈顶指针,初始化为-1表示栈为空
} Stack;
// 判断栈是否为空
bool StackEmpty(Stack s)
{
    if (s.top1 == -1) // 若栈顶指针为-1,表示栈为空
    {
        return true; // 返回true,栈为空
    }
    return false; // 否则返回false,栈不为空
}
// 判断栈是否溢出
bool StackOverflow(Stack s)
{
    if (s.top1 >= MAXSIZE - 1) // 若栈顶指针大于等于最大容量减1,表示栈已满
    {
        return true; // 返回true,栈溢出
    }
    return false; // 否则返回false,栈未满
}
// 压栈操作
void Push(Stack &s, char x)
{
    if (!StackOverflow(s)) // 检查栈是否溢出
    {
        s.data[++s.top1] = x; // 将元素压入栈中,并更新栈顶指针
    }
    else
    {
        cout << "当前栈已满" << endl; // 输出栈满提示
    }
}
// 弹栈操作
char Pop(Stack &s)
{
    if (StackEmpty(s)) // 检查栈是否为空
    {
        cout << "当前栈已空" << endl; // 输出栈空提示
        return '\0'; // 返回空字符表示无元素可弹出
    }
    else
    {
        return s.data[s.top1--]; // 返回栈顶元素,并更新栈顶指针
    }
}
// 实现括号匹配
void BracketMatch(Stack &s, string str)
{
    for (int i = 0; i < str.length(); i++) // 遍历输入字符串
    {
        // 如果是左括号,将其压入栈中
        if (str[i] == '[' || str[i] == '{' || str[i] == '(')
        {
            Push(s, str[i]); // 压入栈
        }
        else
        {
            // 如果此时是右括号,而栈为空,则括号不匹配
            if (StackEmpty(s))
            {
                cout << "括号不匹配" << endl; // 输出不匹配提示
                return; // 结束函数
            }
            else
            {
                char chr = Pop(s); // 弹出栈顶元素
                // 如果栈不为空,但是栈顶元素与当前右括号不匹配
                if (!((str[i] == ']' && chr == '[') || 
                      (str[i] == '}' && chr == '{') || 
                      (str[i] == ')' && chr == '(')))
                {
                    cout << "括号不匹配" << endl; // 输出不匹配提示
                    return; // 结束函数
                }
            }
        }
    }
    // 如果全部匹配后,栈为空表示括号匹配成功
    if (StackEmpty(s))
    {
        cout << "括号匹配" << endl; // 输出匹配成功提示
        return; // 结束函数
    }
    // 栈中有多余的括号,则不匹配
    cout << "括号不匹配" << endl; // 输出不匹配提示
}
int main()
{
    Stack s; // 创建栈实例
    string str = "({})"; // 测试字符串
    BracketMatch(s, str); // 调用括号匹配函数
}
image.gif

(4)题目:稀疏 数组Q利用三元组存储

解题思路:

image.gif 编辑

实现代码:

#include <iostream>
using namespace std;
// 定义三元组结构体
typedef struct
{
    int row;   // 行索引
    int col;   // 列索引
    int value; // 非零值
} Triple[100]; // 定义三元组数组,最多存储100个三元组
// 将稀疏数组存储到三元组
void ArrToTriple(int arr[][3], Triple t, int &len)
{
    for (int i = 0; i < 3; i++) // 遍历行
    {
        for (int j = 0; j < 3; j++) // 遍历列
        {
            if (arr[i][j] != 0) // 如果当前元素不为零
            {
                t[len].row = i; // 将行索引存入三元组
                t[len].col = j; // 将列索引存入三元组
                t[len].value = arr[i][j]; // 将非零值存入三元组
                len++; // 增加三元组的计数
            }
        }
    }
}
// 将三元组恢复成稀疏数组
void TripleToArr(int arr[][3], Triple t, int len)
{
    for (int i = 0; i < len; i++) // 遍历三元组
    {
        arr[t[i].row][t[i].col] = t[i].value; // 根据三元组信息重建稀疏数组
    }
}
// 打印二维数组
void Print(int arr[][3])
{
    for (int i = 0; i < 3; i++) // 遍历行
    {
        for (int j = 0; j < 3; j++) // 遍历列
        {
            cout << arr[i][j] << '\t'; // 打印数组元素并用制表符分隔
        }
        cout << endl; // 打印完一行后换行
    }
}
int main()
{
    int arr[3][3] = {{1, 0, 0}, {4, 0, 6}, {0, 8, 0}}; // 定义稀疏矩阵
    Triple t; // 创建三元组数组
    int len = 0; // 三元组的计数初始化为0
    int new_arr[3][3] = {0}; // 初始化恢复后的数组为全零
    ArrToTriple(arr, t, len); // 将稀疏矩阵转换为三元组
    TripleToArr(new_arr, t, len); // 将三元组恢复为稀疏矩阵
    Print(new_arr); // 打印恢复后的稀疏矩阵
}
image.gif

(5)题目:二维数组Q按列存储

解题思路: image.gif

实现代码:

#include <iostream>
using namespace std;
// 将二维数组按列存储在一维数组中
void TwoMapOneDim(int arr[][3], int array[], int row, int col)
{
    int k = 0; // 一维数组的索引
    for (int i = 0; i < row; i++) // 遍历行
    {
        for (int j = 0; j < col; j++) // 遍历列
        {
            array[k++] = arr[j][i]; // 将二维数组按列存入一维数组
        }
    }
}
// 按照索引从一维数组取值
int OneDimIndex(int *array, int i, int j)
{
    return array[(j - 1) * 3 + i - 1]; // 根据行列索引计算一维数组中的位置并返回值
}
// 打印二维数组
void PrintTwoDim(int arr[][3], int row, int col)
{
    for (int i = 0; i < row; i++) // 遍历行
    {
        for (int j = 0; j < col; j++) // 遍历列
        {
            cout << arr[i][j] << '\t'; // 打印数组元素并用制表符分隔
        }
        cout << endl; // 打印完一行后换行
    }
}
// 打印一维数组
void PrintOneDim(int *arr, int n)
{
    for (int i = 0; i < n; i++) // 遍历一维数组
    {
        cout << arr[i] << '\t'; // 打印数组元素并用制表符分隔
    }
    cout << endl; // 打印完后换行
}
int main()
{
    int arr[3][3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // 定义一个3x3的二维数组
    int array[9]; // 定义一个一维数组用于存储转换后的元素
    PrintTwoDim(arr, 3, 3); // 打印原始的二维数组
    TwoMapOneDim(arr, array, 3, 3); // 将二维数组按列存储到一维数组
    PrintOneDim(array, 9); // 打印存储的结果的一维数组
    cout << OneDimIndex(array, 3, 2); // 输出从一维数组中取出的特定元素
}
image.gif


相关文章
|
11天前
|
算法
【算法】栈
栈相关算法题,供参考,附有链接地址及板书
|
2月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
244 9
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
40 1
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
73 5
|
2月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
2月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
2月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
54 4
|
3月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
55 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器

热门文章

最新文章