来源 [尊重原有作者劳动成果]
一、 计算题
1:解:
$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{n(n+1)(n+2)\cdots (2n-1)}=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{\frac{1}{2}(n+1)(n+2)\cdots [n+(n-1)](n+n)} $
$=\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\frac{1}{2}}\cdot \underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}=\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}$
而
$\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}={{e}^{\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{i=1}^{n}{\ln (1+\frac{i}{n})}}}={{e}^{\int_{0}^{1}{\ln (1+x)dx}}}$
由于
$\int_{0}^{1}{\ln (1+x)dx=x\ln (1+x)|_{0}^{1}}-\int_{0}^{1}{\frac{x}{1+x}}dx=\ln 2-1+\ln (1+x)|_{0}^{1}=2\ln 2-1=\ln \frac{4}{e}$
于是
$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{n(n+1)(n+2)\cdots (2n-1)}=\frac{4}{e}$
2:解: 不妨设
$x=r\sin \varphi \cos \theta ,y=r\sin \varphi \sin \theta ,z=r\cos \varphi ,0\le \varphi \le \pi ,0\le \theta \le 2\pi ,0\le r\le t$
于是
$\iiint\limits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\le {{t}^{2}}}{\sin \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}=\int_{0}^{2\pi }{d\theta \int_{0}^{\pi }{d\varphi \int_{0}^{t}{{{r}^{2}}\sin \varphi \cdot \sin rdr}}}$
$=2\pi \cdot (-\cos \varphi )_{0}^{\pi }\cdot \int_{0}^{t}{{{r}^{2}}}\sin rdr=4\pi \int_{0}^{t}{{{r}^{2}}}\sin rdr$
于是
$\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\iiint\limits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\le {{t}^{2}}}{\sin \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}}{{{t}^{4}}}=\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{4\pi \int_{0}^{t}{{{r}^{2}}\sin rdr}}{{{t}^{4}}}=\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\pi {{t}^{2}}\sin t}{{{t}^{3}}}=\pi $
3:解:不妨设
$P(x,y)=-\frac{y}{{{x}^{2}}+9{{y}^{2}}},Q(x,y)=\frac{x}{{{x}^{2}}+9{{y}^{2}}}$
于是
${{P}_{y}}=\frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}},{{Q}_{x}}=\frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}}$
记$D$是$L$所包围的封闭面积,由格林公式可知:
$\oint_{L}{\frac{xdy-ydx}{{{x}^{2}}+9{{y}^{2}}}}=\iint_{D}{({{Q}_{y}}-{{P}_{x}})dxdy=0}$
二、 证明:不妨设$g(x)={{x}^{\alpha }},0\alpha 1,x\in [0,+\infty )$,且$[0,+\infty )=[0,1]\cup [1,+\infty )$
对任意的$\varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}\in [1,+\infty )$,由中值定理可知,存在$\xi $在${{x}_{1}}$与${{x}_{2}}$之间,使得
$\left| g({{x}_{1}})-g({{x}_{2}}) \right|=\left| g(\xi ) \right|\left| {{x}_{1}}-{{x}_{2}} \right|=\frac{\alpha }{{{\xi }^{^{1-\alpha }}}}\left| {{x}_{1}}-{{x}_{2}} \right|\le \alpha \left| {{x}_{1}}-{{x}_{2}} \right|$
于是令$\delta =\frac{\varepsilon }{\alpha }$,当$\left| {{x}_{1}}-{{x}_{2}} \right|\delta $时,有$\left| g({{x}_{1}})-g({{x}_{2}}) \right|\varepsilon $
于是$g(x)$在$[1,+\infty )$上一致连续
而$g(x)$在$[0,1]$上连续,则$g(x)$在$[0,1]$上一致连续
于是$g(x)$在$[0,+\infty )$上一致连续
由$\underset{x\to \infty }{\mathop{\lim }}\,f(x)$存在,则存在${{M}_{1}}0$,存在$N0$,当$nN$时,有$\left| f(x) \right|{{M}_{1}}$
而$f(x)$在$[0,N+1]$上连续,则$f(x)$在$[0,N+1]$上有界
于是存在${{M}_{2}}0$,对一切$x\in [0,N+1]$,有$\left| f(x) \right|{{M}_{2}}$
令$M=\max \{{{M}_{1}},{{M}_{2}}\}$,则对一切$x\in [0,+\infty )$,有$\left| f(x) \right|M$
对任意的$\varepsilon 0$,任意的${{x}_{3}},{{x}_{4}}\in [0,+\infty )$,由中值定理可知,存在$\eta $在${{x}_{3}}$与${{x}_{4}}$之间,使得
$\left| f(g({{x}_{3}}))-f(g({{x}_{4}})) \right|=\left| f(\eta ) \right|\left| g({{x}_{3}})-g({{x}_{4}}) \right|M\left| g({{x}_{3}})-g({{x}_{4}}) \right|$
由$g(x)$在$[0,+\infty )$上一致连续
则对上述$\varepsilon 0$,${{x}_{3}},{{x}_{4}}\in [0,+\infty )$,当$\left| {{x}_{3}}-{{x}_{4}} \right|\delta $时,有$\left| g({{x}_{3}})-g({{x}_{4}}) \right|\frac{\varepsilon }{M}$
即$\left| f(g({{x}_{3}}))-f(g({{x}_{4}})) \right|\varepsilon$
于是$f({{x}^{\alpha }})$在$[0,+\infty )$上一致连续
三、 证明:不妨设
$F(x)=[f(x)-f(a)][g(b)-g(a)]-[f(b)-f(a)][g(x)-g(a)],x\in [a,b]$
于是$F(a)=F(b)=0$
而$F(x)$在$[a,b]$上连续,$(a,b)$内可导,由罗尔定理可知:
存在$\xi \in (a,b)$,使得$F(\xi )=0$
即$[f(b)-f(a)]g(\xi )=[g(b)-g(a)]f(\xi )$
四、
(1)证明:,对任意的$x\in (0,+\infty )$由于$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{n}{{{e}^{nx}}}=0$,则$f(x)$在$(0,+\infty )$上收敛
(2)证明:不妨设${{u}_{n}}(x)=n{{e}^{-nx}}$,由于$\underset{n\to +\infty }{\mathop{\lim }}\,{{u}_{n}}(x)=0$
于是
$\underset{x\in (0,+\infty )}{\mathop{\sup }}\,\left| {{u}_{n}}(x)-0 \right|\ge {{u}_{n}}(\frac{1}{n})=n{{e}^{-1}}\to +\infty \ne 0(n\to +\infty )$
于是$\sum\limits_{n=1}^{+\infty }{n{{e}^{-nx}}}$在$(0,+\infty )$上非一致收敛
(3)证明:由题可知:
$f(x)={{e}^{-x}}+2{{e}^{-2x}}+\cdots +n{{e}^{-nx}}+(n+1){{e}^{-(n+1)x}}+\cdots $
${{e}^{-x}}f(x)={{e}^{-2x}}+2{{e}^{-3x}}+\cdots +n{{e}^{-(n+1)x}}+(n+1){{e}^{-(n+2)x}}+\cdots $
于是
$(1-{{e}^{-x}})f(x)=\sum\limits_{n=1}^{+\infty }{{{e}^{-nx}}}=\frac{{{e}^{-x}}}{1-{{e}^{-x}}}$
则$f(x)=\frac{{{e}^{-x}}}{{{(1-{{e}^{-x}})}^{2}}}$
显然$f(x)$在$(0,+\infty )$上无穷次可导
(或用定义进行证明)
五、设$F(x,y)={{x}^{2}}+y-\sin (xy)$
(1) 显然,有$F(0,0)=0$
(2)${{F}_{y}}(x,y)=1-x\cos (xy)$
(3)${{F}_{y}}(0,0)=1\ne 0$
由隐函数存在定理,存在$\delta 0$,存在$x\in \left[ \delta ,+\infty \right) $上的连续可微的函数$0{{{u}}_{n}}\left( x \right)\le \frac{1}{{{n}^{3}}x}\le \frac{1}{\delta }\frac{1}{{{n}^{3}}}$,$y(0)=0$,满足$\left[ \delta ,+\infty \right) $,${S}\left( x \right)=\sum\limits_{n=1}^{\infty }{{{{{u}}}_{n}}\left( x \right)} $,${{F}_{x}}=2x-y\cos (xy)$,
且$y(x)=-\frac{{{F}_{x}}(x,y)}{{{F}_{y}}(x,y)}=-\frac{2x-y\cos (xy)}{1-x\cos (xy)}$
于是$y(0)=0$
六、
七、
(1)证明:由积分第一中值定理可知,存在${{x}_{n}}\in [n-1,n]$,使得
$\sum\limits_{n=1}^{+\infty }{{{\left| u({{x}_{n}}) \right|}^{2}}=\sum\limits_{n=1}^{+\infty }{\int_{n-1}^{n}{{{\left| u(x) \right|}^{2}}dx}=\int_{0}^{+\infty }{{{\left| u(x) \right|}^{2}}dx\le }}}\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx+\infty }$
于是
$\underset{n\to +\infty }{\mathop{\lim }}\,\left| u{{({{x}_{n}})}^{2}} \right|=0\Rightarrow \underset{n\to +\infty }{\mathop{\lim }}\,\left| u({{x}_{n}}) \right|=0$
于是存在$ [0,+\infty ) $中的子列$\{{{x}_{n}}\}_{0}^{+\infty }$,使得当$n\to +\infty $时,${{x}_{n}}\to +\infty $且$u({{x}_{n}})\to 0$
(2)由于$\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}$收敛,由柯西---施瓦兹不等式可知:
$\left| {{u}^{2}}({{x}_{2}})-{{u}^{2}}({{x}_{1}}) \right|=2\int_{{{x}_{1}}}^{{{x}_{2}}}{\left| u(x)u(x) \right|}dx\le \int_{{{x}_{1}}}^{{{x}_{2}}}{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}\to 0({{x}_{2}}\ge {{x}_{1}}\to +\infty )$
于是由柯西收敛准则:${{u}^{2}}(x)\to 0(x\to +\infty )\Rightarrow u(x)\to 0(x\to +\infty )$
而$u(x)$在$[0,+\infty )$上连续,于是存在$M0$,使得$\left| u(x) \right|\le M$
令$C=\frac{M}{\sqrt{\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}}}$
于是存在常数$C0$,使得
$\underset{x\in [0,+\infty \}}{\mathop{\sup }}\,\left| u(x) \right|\le C{{(\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| {u}(x) \right|}^{2}})}dx)}^{\frac{1}{2}}}$
八、
(1)证明:由于
$\frac{\partial u}{\partial n}=\frac{\partial u}{\partial x}\cos (n,x)+\frac{\partial u}{\partial y}\cos (n,y)+\frac{\partial u}{\partial z}\cos (n,z)$
由第一型和第二型曲面积分的关系和$Guass$公式可知:
$\iint\limits_{\partial \Omega }{v\cdot \frac{\partial u}{\partial n}}dS=\iint\limits_{\partial \Omega }{v[\frac{\partial u}{\partial x}\cos (n,x)+\frac{\partial u}{\partial y}\cos (n,y)+\frac{\partial u}{\partial z}\cos (n,z)}]dS$
$=\iint\limits_{\partial \Omega }{v[\frac{\partial u}{\partial x}dydz+\frac{\partial u}{\partial y}dzdx+\frac{\partial u}{\partial z}dxdy]}$
$=\iiint_{\Omega }{v\cdot \Delta udxdydz+\iiint_{\Omega }{\nabla v\cdot \nabla udxdydz}}$
即\[\iiint_{\Omega }{v\Delta udxdydz=-}\iiint_{\Omega }{(\nabla u\cdot \nabla v)dxdydz+\iint\limits_{\partial \Omega }{v\cdot \frac{\partial u}{\partial n}}}dS\]
(2)