[Everyday Mathematics]20150301

简介: 设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1].

设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1]. \eex$$ 试证: $f\equiv 0$.

目录
相关文章
[Everyday Mathematics]20150305
设 $f\in C^2[0,1]$, $$\bex f(0)=-1,\quad f'(1)=3,\quad \int_0^1 xf''(x)\rd x=1. \eex$$ 试求 $f(1)$.   解答: $$\beex \bea 1&=\int_0^1 x\rd f'(x)\\ &=xf'(x...
693 0
[Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\rd \lm =\sedd{\ba{ll} |\sin x|,&-1
685 0
[Everyday Mathematics]20150303
设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f(x)\rd x=0. \eex$$
793 0
[Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty e^{-x^3}\rd x. \eex$$
851 0
[Everyday Mathematics]20150220
试求 $$\bex \sum_{k=0}^\infty\frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)}. \eex$$
512 0
|
机器学习/深度学习
[Everyday Mathematics]20150211 Carlson inequality
$$\bex a_n\geq 0\ra \vsm{n}a_n\leq \sqrt{\pi}\sex{\vsm{n}a_n^2}^{1/4} \sex{\vsm{n}n^2a_n^2}^{1/4}, \eex$$ $$\bex \int_0^\infty |f(x)|\rd x \leq\sqrt{\...
604 0
[Everyday Mathematics]20150207
求极限 $$\bex \lim_{x\to+\infty}\sex{\sqrt{x+\sqrt{x+\sqrt{x^\al}}}-\sqrt{x}},\quad\sex{0
497 0
[Everyday Mathematics]20150130
计算下列积分 $$\bex \int_0^\infty \frac{\sin^3x}{x^3}\rd x. \eex$$
691 0
[Everyday Mathematics]20150122
设 $f:[0,1]\to [0,1]$.   (1). 若 $f$ 连续, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.   (2). 若 $f$ 单调递增, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.
754 0
|
Perl
[Everyday Mathematics]20150131
在 $\bbR^4$ 中定义如下有界区域 $\Omega$: $$\bex \Omega=\sed{(x,y,z,w)\in\bbR^4;\ |x|+|y|+\sqrt{z^2+w^2}\leq 1}, \eex$$ 计算 $\Omega$ 的体积.
549 0

热门文章

最新文章