[Everyday Mathematics]20150122

简介: 设 $f:[0,1]\to [0,1]$.   (1). 若 $f$ 连续, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.   (2). 若 $f$ 单调递增, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.

设 $f:[0,1]\to [0,1]$.

 

(1). 若 $f$ 连续, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.

 

(2). 若 $f$ 单调递增, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.

 

(3). 若 $f$ 单调递减, 请问上述结论是否仍然成立? 如果成立, 请给出证明; 如果不成立, 则给出反例.

目录
相关文章
|
机器学习/深度学习
[Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1].
657 0
[Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\st f''(\xi)=f(\xi)(1+2\tan^2\xi). \eex$$
765 0
[Everyday Mathematics]20150218
设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.
483 0
[Everyday Mathematics]20150223
是否存在 $3\times 3$ 阶实方阵 $A$ 使得 $\tr A=0$ 且 $A^2+A^T=I$?
529 0
[Everyday Mathematics]20150209
设 $f$ 在区间 $I$ 上三阶可导, $f'\neq 0$, 则可定义 $f$ 的 Schwarz 导数: $$\bex S(f,x)=\frac{f'''(x)}{f'(x)}-\frac{3}{2}\sez{\frac{f''(x)}{f'(x)}}^2 =\sez{\frac{f''(x)...
803 0
[Everyday Mathematics]20150123
设 $A,B$ 是同阶方阵, 满足 $\rank(AB-BA)=1$. 试证: $(AB-BA)^2=0$.
574 0
[Everyday Mathematics]20150205
设 $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \sex{\frac{A}{h-k}}^\al\phi(h)^\beta,\quad k>h\geq k_0, \eex$$ 其中 $A,\al>0$, $\beta>1$.
650 0
[Everyday Mathematics]20150202
设 $f:\bbR^2\to \bbR$ 为连续函数, 且满足条件 $$\bex f(x+1,y)=f(x,y+1)=f(x,y),\quad\forall\ (x,y)\in \bbR^2. \eex$$ 证明: $f$ 是一致连续函数.
538 0