[Everyday Mathematics]20150305

简介: 设 $f\in C^2[0,1]$, $$\bex f(0)=-1,\quad f'(1)=3,\quad \int_0^1 xf''(x)\rd x=1. \eex$$ 试求 $f(1)$.   解答: $$\beex \bea 1&=\int_0^1 x\rd f'(x)\\ &=xf'(x...

设 $f\in C^2[0,1]$, $$\bex f(0)=-1,\quad f'(1)=3,\quad \int_0^1 xf''(x)\rd x=1. \eex$$ 试求 $f(1)$.

 

解答: $$\beex \bea 1&=\int_0^1 x\rd f'(x)\\ &=xf'(x)|_0^1-\int_0^1 f'(x)\rd x\\ &=f'(1)-[f(1)-f(0)]\\ &=f'(1)+f(0)-f(1)\\ &=3-1-f(1) \eea \eeex$$ 知 $f(1)=1$. 

目录
相关文章
[Everyday Mathematics]20150306
在王高雄等《常微分方程(第三版)》习题 2.5 第 1 题第 (32) 小题: $$\bex \frac{\rd y}{\rd x}+\frac{1+xy^3}{1+x^3y}=0. \eex$$   解答: $$\beex \bea 0&=(1+xy^3)\rd x+(1+x^3y)\rd y...
652 0
|
机器学习/深度学习
[Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1].
657 0
[Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\st f''(\xi)=f(\xi)(1+2\tan^2\xi). \eex$$
765 0
[Everyday Mathematics]20150223
是否存在 $3\times 3$ 阶实方阵 $A$ 使得 $\tr A=0$ 且 $A^2+A^T=I$?
529 0
[Everyday Mathematics]20150214
设 $\dps{x\in \sex{0,\frac{\pi}{2}}}$, 试比较 $\tan(\sin x)$ 和 $\sin(\tan x)$.
563 0
[Everyday Mathematics]20150227
(Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯一的一个内切于 $T$ 的椭圆, 使得切点为 $T$ 各边的中点, 椭圆的的两焦点为 $p'(z)$ 的两个根.
823 0
[Everyday Mathematics]20150218
设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.
483 0
[Everyday Mathematics]20150210
设正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 $1$, $E$ 为 $AB$ 的中点, $P$ 为体对角线 $BD_1$ 上一点, 当 $\angle CPE$ 最大时, 求三菱锥 $P-BCE$ 的体积.
670 0
[Everyday Mathematics]20150130
计算下列积分 $$\bex \int_0^\infty \frac{\sin^3x}{x^3}\rd x. \eex$$
676 0