\bexan≥0\ra\vsmnan≤√π\sex\vsmna2n1/4\sex\vsmnn2a2n1/4,\eex \bex∫∞0|f(x)|\rdx≤√π\sex∫∞0f2(x)\rdx1/4\sex∫∞0x2f2(x)\rdx1/4.\eex
证明: 设 \bex\al=\vsmnn2a2n,β=\vsmna2n,\eex 则 \beex \bea \sex{\vsm{n}a_n}^2&=\sex{\vsm{n}a_n\sqrt{\al+\beta n^2}\frac{1}{\sqrt{\al+\beta n^2}}}^2 \leq \vsm{n}a_n^2(\al+\beta n^2)\vsm{n}\frac{1}{\al+\beta n^2}\\ &\leq 2\al \beta \int_0^\infty \frac{1}{\al+\beta x^2}\rd x =\pi \al\beta. \eea \eeex