在 $\bbR^4$ 中定义如下有界区域 $\Omega$: $$\bex \Omega=\sed{(x,y,z,w)\in\bbR^4;\ |x|+|y|+\sqrt{z^2+w^2}\leq 1}, \eex$$ 计算 $\Omega$ 的体积.
在 $\bbR^4$ 中定义如下有界区域 $\Omega$: $$\bex \Omega=\sed{(x,y,z,w)\in\bbR^4;\ |x|+|y|+\sqrt{z^2+w^2}\leq 1}, \eex$$ 计算 $\Omega$ 的体积.