HTAP数据库 PostgreSQL 场景与性能测试之 31 - (OLTP) 高吞吐数据进出(堆存、行扫、无需索引) - 阅后即焚(读写大吞吐并测)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 秒杀 - 高并发单点更新 (OLTP)

1、背景

高吞吐的数据写入,消费,通常是MQ的强项和功能点,但是MQ没有数据存储的能力,也没有计算能力。

而PostgreSQL具备了存储、计算能力,同时PG还提供了高吞吐,可靠性。

在需要高吞吐计算的环境,PG是非常不错的选择。

如果业务上需要先进先出的模式,可以加一个时间索引,即可达到这样的效率,写入和消费都在300万行/s以上:

pic

详见:

《HTAP数据库 PostgreSQL 场景与性能测试之 27 - (OLTP) 物联网 - FEED日志, 流式处理 与 阅后即焚 (CTE)》

如果业务上不要求强烈的先进先出,并且处理吞吐足够强悍的话,实际上PG可以不需要索引,因为是堆表,没有索引,写和消费的吞吐可以做到更大。

本文测试的是不需要索引的裸写入和消费吞吐能力(消费、不计算)。

下一篇压测大吞吐下,结合 函数计算和JSON的能力。

2、设计

1、堆表、多表、大吞吐写入

2、堆表、多表、大吞吐消费

同时压测写入和消费。

3、准备测试表

create table t_sensor (sid int, info text, crt_time timestamp) ;  

使用2048个分表。

do language plpgsql $$  
declare  
begin  
  for i in 0..2047 loop  
    execute 'create table t_sensor'||i||'(like t_sensor including all) inherits(t_sensor) '||case when mod(i,2)=0 then ' ' else ' tablespace tbs1' end;  
  end loop;  
end;  
$$;  

4、准备测试函数(可选)

1、批量生成传感器测试数据的函数

CREATE OR REPLACE FUNCTION public.ins_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  execute 'insert into t_sensor'||suffix||' select '||$1||', 0.1, now() from generate_series(1,'||$2||')';  
end;  
$function$;  

2、批量消费传感器数据的函数,按时间,从最早开始消费。

处理逻辑也可以放到里面,例如预警逻辑(采用PostgreSQL异步消息、CTE语法)。

《PostgreSQL 异步消息实践 - Feed系统实时监测与响应(如 电商主动服务) - 分钟级到毫秒级的跨域》

《PostgreSQL 内存表》

CREATE OR REPLACE FUNCTION public.consume_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  -- 带流式处理业务逻辑的例句(采用CTE语法):  
  -- with t1 as (delete from t_sensor$suffix where ctid = any(array(select ctid from t_sensor$suffix limit 1000)) returning *)  
  --   select pg_notify('channel_name', 'reason:xxx::::'||row_to_json(t1)) from t1 where ......;  
  --  
  -- 如果有多个判断基准,可以先存入TMP TABLE,再到TMP TABLE处理。  
  -- 使用普通的TMP table或者使用内存TMP TABLE。  
  -- [《PostgreSQL 内存表》](../201608/20160818_01.md)  
  
  -- 本例仅测试不带处理逻辑,只消费的情况,关注消费速度。  
  execute format('delete from t_sensor%s where ctid = any(array(select ctid from t_sensor%s limit %s))', suffix, suffix, $2);  
end;  
$function$;  

5、准备测试数据

6、准备测试脚本

同时压测写入和消费。

1、高吞吐写入测试,100万个传感器,每批1000条。

vi test.sql  
  
\set sid random(1,1000000)  
select ins_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

2、高吞吐消费测试,100万个传感器,每批1000条。

vi test.sql  
  
\set sid random(1,1000000)  
select consume_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test1.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

7、测试

1、高吞吐写入测试,100万个传感器,每批1000条。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 581437  
latency average = 14.446 ms  
latency stddev = 12.231 ms  
tps = 1937.869058 (including connections establishing)  
tps = 1937.999398 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
        14.445  select ins_batch(:sid, 1000);  

2、高吞吐消费测试,100万个传感器,每批1000条。

transaction type: ./test1.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 1254322  
latency average = 6.697 ms  
latency stddev = 10.925 ms  
tps = 4180.897450 (including connections establishing)  
tps = 4181.104213 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
         6.696  select consume_batch(:sid, 1000);  

一、 TPS

同时压测写入和消费的吞吐如下:

1、数据写入速度: 193万 行/s。
2、数据消费速度: 418万 行/s。

二、 平均响应时间

同时压测写入和消费的吞吐如下:

1、数据写入速度: 14.4 毫秒
2、数据消费速度: 6.7 毫秒

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
17天前
|
数据采集 DataWorks 安全
DataWorks产品使用合集之选择独享调度,数据集成里可以使用,但是数据地图里面测试无法通过,是什么原因导致的
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
16 0
DataWorks产品使用合集之选择独享调度,数据集成里可以使用,但是数据地图里面测试无法通过,是什么原因导致的
|
26天前
|
人工智能 分布式计算 DataWorks
首批!阿里云 MaxCompute 完成中国信通院数据智能平台专项测试
2024年5月31日,在中国信通院组织的首批数据智能平台专项测试中,阿里云数据智能平台解决方案(MaxCompute、DataWorks、PAI)顺利完成测试。
106 5
首批!阿里云 MaxCompute 完成中国信通院数据智能平台专项测试
|
2天前
|
机器学习/深度学习 运维 算法
Doping:使用精心设计的合成数据测试和评估异常检测器的技术
在这篇文章中,我们将探讨测试和评估异常检测器的问题(这是一个众所周知的难题),并提出了一种解决方案被称为“Doping”方法。使用Doping方法,真实数据行会被(通常是)随机修改,修改的方式是确保它们在某些方面可能成为异常值,这时应该被异常检测器检测到。然后通过评估检测器检测Doping记录的效果来评估这些检测器。
10 0
|
1月前
|
数据可视化 数据挖掘 定位技术
在服务中收集和测试数据
【6月更文挑战第16天】本文讨论了数据收集和测试的重要性,指出样本量应根据时间和预算调整。数据分析涉及比较结果与假设,可视化数据以增强理解,并通过统计测试确认显著性。设计的持续优化是关键,适应变化的业务、技术和用户需求,数据驱动的方法能提供最佳用户体验。
26 5
在服务中收集和测试数据
|
19天前
|
关系型数据库 MySQL 分布式数据库
PolarDB产品使用问题之mysql迁移后查询不走索引了,该如何解决
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
19天前
|
存储 测试技术
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
29 0
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
|
20天前
|
存储 测试技术 Python
记一次线上安全测试中误用父类属性导致数据污染的解决方案
在线上安全测试的过程中,会使用 Nmap 进行端口扫描,为了提升端口扫描的效率,扫描策略通常是检测常用端口是否处于开放状态,并在父类中使用名为 all_open_ports 的属性来记录这些开放的端口。 在后续的测试过程中,需要检查所涉及的端口是否包含在 all_open_ports 中。如果不存在,就需要进一步对这些端口进行开放检测。如果端口的检测结果是开放的,测试将继续进行并将这些端口记录到 all_open_ports 中,以便在下次遇到相同端口时无需重复检测。 然而,由于安全测试是多线程进行的,某些情况下可以将 all_open_ports 理解为共享变量,这导致当两个不同的测试环境同
|
20天前
|
运维 关系型数据库 分布式数据库
PolarDB产品使用问题之列存索引的原理是什么
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
4天前
|
缓存 数据库
高并发场景下,到底先更新缓存还是先更新数据库?
高并发场景下,到底先更新缓存还是先更新数据库?
|
1月前
|
SQL 存储 NoSQL
SQL与NoSQL数据库的选择:技术与场景驱动下的决策
【6月更文挑战第16天】**SQL vs NoSQL数据库:技术与应用场景比较。SQL数据库以其关系模型、ACID特性、灵活查询及事务处理见长,适合结构化数据和强一致性场景。NoSQL则以数据模型灵活性、高可扩展性、高性能及低成本著称,适合大数据、高并发和快速迭代的需求。选择应基于业务需求、数据特性、系统架构和成本。**

相关产品

  • 云原生数据库 PolarDB