HTAP数据库 PostgreSQL 场景与性能测试之 31 - (OLTP) 高吞吐数据进出(堆存、行扫、无需索引) - 阅后即焚(读写大吞吐并测)

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 秒杀 - 高并发单点更新 (OLTP)

1、背景

高吞吐的数据写入,消费,通常是MQ的强项和功能点,但是MQ没有数据存储的能力,也没有计算能力。

而PostgreSQL具备了存储、计算能力,同时PG还提供了高吞吐,可靠性。

在需要高吞吐计算的环境,PG是非常不错的选择。

如果业务上需要先进先出的模式,可以加一个时间索引,即可达到这样的效率,写入和消费都在300万行/s以上:

pic

详见:

《HTAP数据库 PostgreSQL 场景与性能测试之 27 - (OLTP) 物联网 - FEED日志, 流式处理 与 阅后即焚 (CTE)》

如果业务上不要求强烈的先进先出,并且处理吞吐足够强悍的话,实际上PG可以不需要索引,因为是堆表,没有索引,写和消费的吞吐可以做到更大。

本文测试的是不需要索引的裸写入和消费吞吐能力(消费、不计算)。

下一篇压测大吞吐下,结合 函数计算和JSON的能力。

2、设计

1、堆表、多表、大吞吐写入

2、堆表、多表、大吞吐消费

同时压测写入和消费。

3、准备测试表

create table t_sensor (sid int, info text, crt_time timestamp) ;  

使用2048个分表。

do language plpgsql $$  
declare  
begin  
  for i in 0..2047 loop  
    execute 'create table t_sensor'||i||'(like t_sensor including all) inherits(t_sensor) '||case when mod(i,2)=0 then ' ' else ' tablespace tbs1' end;  
  end loop;  
end;  
$$;  

4、准备测试函数(可选)

1、批量生成传感器测试数据的函数

CREATE OR REPLACE FUNCTION public.ins_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  execute 'insert into t_sensor'||suffix||' select '||$1||', 0.1, now() from generate_series(1,'||$2||')';  
end;  
$function$;  

2、批量消费传感器数据的函数,按时间,从最早开始消费。

处理逻辑也可以放到里面,例如预警逻辑(采用PostgreSQL异步消息、CTE语法)。

《PostgreSQL 异步消息实践 - Feed系统实时监测与响应(如 电商主动服务) - 分钟级到毫秒级的跨域》

《PostgreSQL 内存表》

CREATE OR REPLACE FUNCTION public.consume_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  -- 带流式处理业务逻辑的例句(采用CTE语法):  
  -- with t1 as (delete from t_sensor$suffix where ctid = any(array(select ctid from t_sensor$suffix limit 1000)) returning *)  
  --   select pg_notify('channel_name', 'reason:xxx::::'||row_to_json(t1)) from t1 where ......;  
  --  
  -- 如果有多个判断基准,可以先存入TMP TABLE,再到TMP TABLE处理。  
  -- 使用普通的TMP table或者使用内存TMP TABLE。  
  -- [《PostgreSQL 内存表》](../201608/20160818_01.md)  
  
  -- 本例仅测试不带处理逻辑,只消费的情况,关注消费速度。  
  execute format('delete from t_sensor%s where ctid = any(array(select ctid from t_sensor%s limit %s))', suffix, suffix, $2);  
end;  
$function$;  

5、准备测试数据

6、准备测试脚本

同时压测写入和消费。

1、高吞吐写入测试,100万个传感器,每批1000条。

vi test.sql  
  
\set sid random(1,1000000)  
select ins_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

2、高吞吐消费测试,100万个传感器,每批1000条。

vi test.sql  
  
\set sid random(1,1000000)  
select consume_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test1.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

7、测试

1、高吞吐写入测试,100万个传感器,每批1000条。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 581437  
latency average = 14.446 ms  
latency stddev = 12.231 ms  
tps = 1937.869058 (including connections establishing)  
tps = 1937.999398 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
        14.445  select ins_batch(:sid, 1000);  

2、高吞吐消费测试,100万个传感器,每批1000条。

transaction type: ./test1.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 1254322  
latency average = 6.697 ms  
latency stddev = 10.925 ms  
tps = 4180.897450 (including connections establishing)  
tps = 4181.104213 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
         6.696  select consume_batch(:sid, 1000);  

一、 TPS

同时压测写入和消费的吞吐如下:

1、数据写入速度: 193万 行/s。
2、数据消费速度: 418万 行/s。

二、 平均响应时间

同时压测写入和消费的吞吐如下:

1、数据写入速度: 14.4 毫秒
2、数据消费速度: 6.7 毫秒

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
28天前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL的数据库
PostgreSQL的逻辑存储结构涵盖数据库集群、数据库、表、索引、视图等对象,每个对象有唯一的oid标识。数据库集群包含多个数据库,每个数据库又包含多个模式,模式内含表、函数等。通过特定SQL命令可查看和管理这些数据库对象。
|
1月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL的数据库集群
PostgreSQL的逻辑存储结构涵盖了数据库集群、数据库、表、索引、视图等对象,每个对象都有唯一的oid标识。数据库集群是由单个PostgreSQL实例管理的所有数据库集合,共享同一配置和资源。集群的数据存储在一个称为数据目录的单一目录中,可通过-D选项或PGDATA环境变量指定。
|
1月前
|
关系型数据库 分布式数据库 数据库
PostgreSQL+Citus分布式数据库
PostgreSQL+Citus分布式数据库
66 15
|
1月前
|
SQL 关系型数据库 数据库
PostgreSQL性能飙升的秘密:这几个调优技巧让你的数据库查询速度翻倍!
【10月更文挑战第25天】本文介绍了几种有效提升 PostgreSQL 数据库查询效率的方法,包括索引优化、查询优化、配置优化和硬件优化。通过合理设计索引、编写高效 SQL 查询、调整配置参数和选择合适硬件,可以显著提高数据库性能。
364 1
|
1月前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
180 4
|
2月前
|
SQL 关系型数据库 数据库
使用 PostgreSQL 和 Python 实现数据库操作
【10月更文挑战第2天】使用 PostgreSQL 和 Python 实现数据库操作
|
2月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
8天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
48 11
|
1月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
65 3
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
80 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版