隐马尔可夫模型的Viterbi解码算法

简介: 前言前面在做自然语言处理时涉及到一些词性标注的工作,一般会使用隐马尔科夫模型(HMM)来实现词性标注,而HMM模型的解码实现算法一般就会使用Viterbi算法。

前言

前面在做自然语言处理时涉及到一些词性标注的工作,一般会使用隐马尔科夫模型(HMM)来实现词性标注,而HMM模型的解码实现算法一般就会使用Viterbi算法。

关于穷举法

HMM模型有多种应用,这里说的是其中一个常见应用,即根据观察序列找到最可能的隐含状态序列。最朴素的想法就是直接穷举所有可能的隐含状态序列,并计算出每个组合成的状态序列的概率,概率最大的那个组合序列即是最可能的隐含状态序列。举个水藻和天气的例子,穷举出所有可能的隐含状态序列的概率,如下,
P(dry,damp,soggy | sunny,sunny,sunny), P(dry,damp,soggy | sunny,sunny,cloudy), P(dry,damp,soggy | sunny,sunny,rainy), … . P(dry,damp,soggy | rainy,rainy,rainy),最大值对应的序列即为最可能的隐含状态序列。穷举的路径一共有 3t 条,可以看到随着序列还有状态数的增加,计算量是非常大的。

这里写图片描述

Viterbi算法

上面的穷举法需要的计算量很大,为减少复杂度引入Viterbi算法,Viterbi算法要解决的解码问题就是多步且每步多重选择的最优选择的问题。根据下图就能很清晰看到Viterbi的核心思想,随着时刻增加,每个节点都保存了前一时刻所有节点到该节点的最优值的子路径,如图中红色箭头,当前时刻的某一节点可能的路径为上一时刻所有节点到该节点的路径,但我们只保留其中一条最优路径。依次计算完所有步后,最后通过回溯的方法得到整个过程的最优路径。

这里写图片描述

下面用一个例子说明整个过程,假设有3中状态,序列为t个时刻,p(a1)表示a1节点的值,p(b1)表示b1节点的值,同理其他的节点也一样。对于不同时刻,状态之间的转换概率是不变的,所以p(aa)表示从a状态转移到a状态的概率,不管是从1时刻到2时刻,还是从2时刻到3时刻,都是相同的。同理还有p(ab)、p(ac)、p(ba)…。

这里写图片描述

t+1时刻节点值的计算公式为 pt+1(y)=pt(x)p(xy) 其中x,y都属于a,b,c一种状态。

我们计算t=2时刻的p(a)的值,它可能从a1到a2、b1到a2或c1到a2,假如a1到a2这条路径计算出来的p(a)最大,那么就保留该路径。同理分别计算p(b)和p(c)的最大值,保留b1到b2的路径,b1到c2的路径。接着计算t=3时刻的p(a)、p(b)和p(c),最后到达t时刻,计算该时刻最大的p(a)、p(b)和p(c),选择出它们最大的值的节点,再根据保留的上一时刻的路径依次往前回溯,就得到最优的序列。比如ct是最大的节点,那就是 ct>ct1>...>b3>c2>b1 即最可能的序列为bcb…cc。

========广告时间========

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================

欢迎关注:

这里写图片描述

目录
相关文章
|
4月前
|
人工智能 自然语言处理 算法
算法及模型合规:刻不容缓的企业行动指南
随着AI技术迅猛发展,算法与模型成为企业数字化转型的核心。然而,国家密集出台多项法规,如《人工智能生成合成内容标识办法》等,并开展“清朗·整治AI技术滥用”专项行动,标志着AI监管进入严格阶段。算法备案从“可选项”变为“必选项”,未合规可能面临罚款甚至刑事责任。同时,多地提供备案奖励政策,合规既是规避风险的需要,也是把握政策红利和市场信任的机遇。企业需系统规划合规工作,从被动应对转向主动引领,以适应AI时代的挑战与机遇。
|
5月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
422 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
192 6
|
5月前
|
人工智能 自然语言处理 算法
通义灵码 CCF 算法大会首秀,解码研发智能落地「黄金三角」| 文末领取PPT
通义灵码在首届中国计算机学会(CCF)算法大会现场亮相,与领域学者、企业专家、学生开发者共话大模型与 AI 辅助编程对算法创新和开发效率带来的改变。现场交流讨论氛围热烈,广大开发者对通义灵码表现出高度关注和实践热情。
|
6月前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
7月前
|
机器学习/深度学习 算法
扩散模型=进化算法!生物学大佬用数学揭示本质
在机器学习与生物学交叉领域,Tufts和Harvard大学研究人员揭示了扩散模型与进化算法的深刻联系。研究表明,扩散模型本质上是一种进化算法,通过逐步去噪生成数据点,类似于进化中的变异和选择机制。这一发现不仅在理论上具有重要意义,还提出了扩散进化方法,能够高效识别多解、处理高维复杂参数空间,并显著减少计算步骤,为图像生成、视频合成及神经网络优化等应用带来广泛潜力。论文地址:https://arxiv.org/pdf/2410.02543。
178 21
|
7月前
|
人工智能 算法 搜索推荐
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
|
8月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1285 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
9月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
9月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。

热门文章

最新文章