R语言关联规则模型(Apriori算法)挖掘杂货店的交易数据与交互可视化

简介: R语言关联规则模型(Apriori算法)挖掘杂货店的交易数据与交互可视化

原文链接:http://tecdat.cn/?p=22732


关联规则挖掘是一种无监督的学习方法,从交易数据中挖掘规则。它有助于找出数据集中的关系和一起出现的项目。在这篇文章中,我将解释如何在R中提取关联规则。

关联规则模型适用于交易数据。交易数据的一个例子可以是客户的购物历史。

数据分析的第一件事是了解目标数据结构和内容。出于学习的目的,我认为使用一个简单的数据集更好。一旦我们知道了这个模型,就可以很容易地把它应用于更复杂的数据集。

在这里,我们使用杂货店的交易数据。首先,我们创建一个数据框并将其转换为交易类型。

读取数据

n=500 # 交易数量
trans <- data.frame() # 收集数据的数据框架

创建数据并将其收集到交易数据框中。

for(i in 1:n)
{
  count <- sample(1:3, 1) # 从1到3的物品计数
  如果(i %% 2 == 1)
  {
    if(!add_product %in% selected)
    {
      tran <- data.frame(items = add_product, tid = i)

检查交易数据框中的数据。

image.png

接下来,我们需要将生成的数据框转换为交易数据类型。

as(split(\[, "items"\], \[, "tid"\]), "transa")

image.png

为了检查交易数据的内容,我们使用 inspect() 命令。

image.png

挖掘规则

sort(rules_1, dby = "confidence")

image.png

.......

我们从上面的列表中获取第一个rhs项(规则后项)来检查该项的规则。但如果你知道目标项目,可以在参数中只写rhs="melon"。

inspect(rules_1@rhs\[1\])

image.png

> rhs_item <- gsub("\\\}","", rhs)

image.png

我们为我们的rhs_item建立规则

image.png

按 "置信度 "排序并检查规则

sort(rules_2, "confidence")

image.png

结果可视化

最后,我们从规则集_2中绘制出前5条规则。

> plot(rules_2\[1:5\])

image.png

图1

绘制全部规则

546ebfc0758af63555b33ab724a936b9_640_wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1.png

图2


交互可视化

绘制出前5条规则

precision     =  3
igraphLayout     =  layout_nicely
list(nodes = nodes, edges = edges, nodesToDataframe = nodesToDataframe, 
            edgesToDataframe = edgesToDataframe,
x$legend <- legend
    htmlwidgets::createWidget( x, width = width, 
        height = height)

e5e0d4007cd17de0d3d9bc627c1e95e9_640_wx_fmt=gif&tp=webp&wxfrom=5&wx_lazy=1.gif

图3

绘制全部规则

ec07211b5af19f9fa5565050e11ce914_640_wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1.png

图4

f370f7ce4eba414556518bfce01e0196_640_wx_fmt=gif&tp=webp&wxfrom=5&wx_lazy=1.gif

图5

相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
125 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
1月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
136 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
14天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
27天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
166 80
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
15天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。

热门文章

最新文章