打造AI训练基础平台!Unity推出Machine Learning Agents

简介: 但在未来,人工智能游戏选手或许将会面临新的对手:另一个人工智能。今天,全球最大的3D游戏引擎Unity宣布发布Unity Machine Learning Agents,通过将其游戏引擎与TensorFlow等机器学习框架相连接

打造AI训练基础平台!Unity推出Machine Learning Agents

但在未来,人工智能游戏选手或许将会面临新的对手:另一个人工智能。今天,全球最大的3D游戏引擎Unity宣布发布Unity Machine Learning Agents,通过将其游戏引擎与TensorFlow等机器学习框架相连接,游戏中的NPC有望通过机器学习的方式变得更有策略性,从而增加游戏的对抗性和可玩性。

但Unity的意图不仅如此。在其博客中,Unity这样写道:

“Unity正处于机器学习与游戏之间的十字路口。我们的使命是使机器学习研究人员获得最强大的训练场景,将他们最新的机器学习技术的应用通过我们回馈给游戏界。 作为这项努力的第一步,我们很高兴推出Unity Machine Learning Agents(ML-Agents)。”

同时,Unity负责AI和机器学习的副总裁Danny Lange表示:

机器学习是一种颠覆性的技术。这是AI的一个令人兴奋的新篇章,因为我们正在使一个可以广泛访问的、端到端的机器学习环境,并向开发者提供让游戏和系统更加智能化的工具、Unity的物理引擎和3D逼真渲染环境。不仅如此,我们的AI工具包还为快速增长的AI爱好者群体探索深度学习提供了一个研究平台,最终将改变游戏行业。“

据雷锋网(公众号:雷锋网)了解,Unity3D是由Unity Technologies开发的一个让玩家轻松创建诸如三维视频游戏、建筑可视化、实时三维动画等类型互动内容的多平台的综合型游戏开发工具。通过Unity3D可以极高精度地模拟真实世界的场景和物理规则,例如各种3D模型、纹理、光影效果、物体的碰撞反弹、甚至橡胶轮胎与混凝土地面的摩擦,而这样的游戏场景可以帮助人工智能研究人员更好地模拟和训练用于真实世界的机器人和AI应用

打造AI训练基础平台!Unity推出Machine Learning Agents

(由Unity创建的一个RL/ML模拟训练环境示例)

这种模拟训练的方法在工业机器人、无人机、无人驾驶车辆和游戏角色设计中均有着广泛应用。目前对用机器学习方法开发智能代理的需求日益增长,Unity希望为这些开发者设计一个更灵活和更易于使用的系统,该系统的典型用户包括:

  • 研究现实场景中复杂的多代理竞争/合作行为的学术研究者;

  • 机器人、无人驾驶及其他工业应用中需要进行大规模并行训练机制的行业研究者;

  • 希望通过智能代理提升游戏AI和可玩性的游戏开发人员。

打造AI训练基础平台!Unity推出Machine Learning Agents

(如何在Unity的ML-Agent中配置学习环境的示意图)

ML-Agent的学习环境包含三类对象:代理(Agent)、大脑(Brain)和学院(Academy)。每个代理可以拥有一组独特的状态和观察值,在环境中采取独特的操作,并为环境中的事件获得独特的奖励。代理的行为由与之相关的大脑决定;大脑定义一个特定的状态和行动空间,并负责决定每个联系的代理人将采取哪些行动,并汇总到“学院”中。“学院”对象对环境的范围进行定义,包括引擎配置、速度和渲染质量、代理频度、场景长度等。所有由大脑设置为外部的代理状态和观察值由外部接口收集并传送给Python API,开发者可使用相应的机器学习库进行处理。

据雷锋网统计,全球销量前1000名的手机游戏中,与Unity有关的作品超过50%,75%与AR/VR相关的内容为Unity引擎创建,采用Unity制作的游戏已经在30亿部设备上使用。Unity在机器学习的转型始于2016年,在2016年,NVIDIA因为在AI上的成功转型成为一家千亿美元公司,对于同样在3D模型和图像渲染领域颇有经验的Unity来说,或许现在正是其转型AI基础平台的大好机会。

目前Unity已经发布了测试版ML-Agent SDK。ML-Agents SDK可以让研究人员和开发人员将使用Unity Editor所创建的游戏和模拟场景转换为可以使用Python API,通过深度增强学习等机器学习方法对智能代理进行训练的环境。对Unity的ML-Agent SDK感兴趣的开发者,可以访问其Github页面获得更详细的消息。



本文作者:岑大师
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
2天前
|
存储 人工智能 自然语言处理
FoloUp:比HR更懂岗位需求!开源语音面试平台爆火:1份岗位需求生成100问,语音AI追问逻辑漏洞
FoloUp 是一个开源的 AI 语音面试平台,能够根据职位描述自动生成定制化的面试问题,并与候选人进行自然对话式的语音面试,帮助企业高效招聘。
30 9
FoloUp:比HR更懂岗位需求!开源语音面试平台爆火:1份岗位需求生成100问,语音AI追问逻辑漏洞
|
6天前
|
存储 人工智能 前端开发
平替cursor : 全平台AI程序员插件,免费无广
平替cursor : 全平台AI程序员插件,免费无广。
190 11
|
6天前
|
人工智能 安全 机器人
LangBot:无缝集成到QQ、微信等消息平台的AI聊天机器人平台
LangBot 是一个开源的多模态即时聊天机器人平台,支持多种即时通信平台和大语言模型,具备多模态交互、插件扩展和Web管理面板等功能。
334 14
LangBot:无缝集成到QQ、微信等消息平台的AI聊天机器人平台
|
6天前
|
存储 人工智能 NoSQL
Airweave:快速集成应用数据打造AI知识库的开源平台,支持多源整合和自动同步数据
Airweave 是一个开源工具,能够将应用程序的数据同步到图数据库和向量数据库中,实现智能代理检索。它支持无代码集成、多租户支持和自动同步等功能。
66 14
|
6天前
|
人工智能 Linux 开发工具
Kiln AI:零代码实现微调模型!自动生成合成数据与微调模型的开源平台
Kiln AI 是一款开源的 AI 开发工具,支持零代码微调多种语言模型,生成合成数据,团队协作开发,自动部署。帮助用户快速构建高质量的 AI 模型。
396 7
Kiln AI:零代码实现微调模型!自动生成合成数据与微调模型的开源平台
|
9天前
|
人工智能 开发框架 机器人
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
AstrBot 是一个开源的多平台聊天机器人及开发框架,支持多种大语言模型和消息平台,具备多轮对话、语音转文字等功能。
2185 13
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
|
13天前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
102 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
14天前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
204 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
27天前
|
存储 人工智能 Serverless
AI 短剧遇上函数计算,一键搭建内容创意平台
为了帮助更多内容创作者和企业快速实现 AI 短剧创作,函数计算 FC 联合百炼联合推出“AI 剧本生成与动画创作解决方案”,通过函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 生图平台,实现从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。创作者只需通过简单操作,就能快速生成高质量的剧本,并一键转化为精美的动画。
|
1月前
|
SQL 人工智能 数据管理
跨云数据管理平台DMS:构建Data+AI的企业智能Data Mesh
跨云数据管理平台DMS助力企业构建智能Data Mesh,实现Data+AI的统一管理。DMS提供开放式元数据服务OneMeta、一站式智能开发平台和云原生AI数据平台,支持多模数据管理和高效的数据处理。结合PolarDB、AnalyticDB等核心引擎,DMS在多个垂直场景中展现出显著优势,如智能营销和向量搜索,提升业务效率和准确性。通过DataOps和MLOps的融合,DMS为企业提供了从数据到AI模型的全生命周期管理,推动数据驱动的业务创新。