【机器学习算法-python实现】KNN-k近邻算法的实现(附源码)

简介: (转载请注明出处:http://blog.csdn.net/buptgshengod)1.背景    今后博主会每周定时更新机器学习算法及其python的简单实现。今天学习的算法是KNN近邻算法。KNN算法是一个监督学习分类器类别的算法。         什么是监督学习,什么又是无监督学习呢。监督学习就是我们知道目标向量的情况下所使用的算法,无监督学习就是当我们不知道具体的目标变量

(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.背景

    今后博主会每周定时更新机器学习算法及其python的简单实现。今天学习的算法是KNN近邻算法。KNN算法是一个监督学习分类器类别的算法。

    

     什么是监督学习,什么又是无监督学习呢。监督学习就是我们知道目标向量的情况下所使用的算法,无监督学习就是当我们不知道具体的目标变量的情况下所使用的。而监督学习又根据目标变量的类别(离散或连续)分为分类器算法和回归算法。

    

       k-Nearest Neighbor。k是算法中的一个约束变量,整个算法的总体思想是比较简单的,就是将数据集的特征值看作是一个个向量。我们给程序一组特征值,假设有三组特征值,就可以看做是(x1,x2,x3)。系统原有的特征值就可以看做是一组组的(y1,y2,y3)向量。通过求两向量间的距离,我们找出前k个距离最短的y的特征值对。这些y值所对应的目标变量就是这个x特征值的分类。

公式:


2.python基础之numpy

   
     numpy是python的一个数学计算库,主要是针对一些矩阵运算,这里我们会大量用到它。 介绍一下本章代码中用到的一些功能。

arry:是numpy自带的数组表示,比如本例中的4行2列数字可以这样输入

group=array([[9,400],[200,5],[100,77],[40,300]])


shape:显示(行,列)例:shape(group)=(4,2)


zeros:列出一个相同格式的空矩阵,例:zeros(group)=([[0,0],[0,0],[0,0],[0,0]])


tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复某个数组。比如tile(A,n),功能是将数组A重复n次,构成一个新的数组


sum(axis=1)矩阵每一行向量相加


3.数据集


 


4.代码

    
代码分三个函数,分别是

创建数据集:

createDataset

from __future__ import division
from numpy import *
import operator



def createDataset():
        group=array([[9,400],[200,5],[100,77],[40,300]])
        
        labels=['1','2','3','1']
        return group,labels  

数据归一化:

autoNorm

def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
  
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    #print normDataSet
    normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
   # print normDataSet
    return normDataSet, ranges, minVals

分类函数:

classify

def classify(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
     
    classCount={}          
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]


5.显示结果

 


  


6.代码下载










目录
相关文章
|
25天前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
1月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
107 5
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
2月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
172 26
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
154 0
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
195 0
|
2月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
274 4
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
402 4
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
219 3
|
2月前
|
算法 机器人 定位技术
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
137 4

热门文章

最新文章

推荐镜像

更多