【数据蒋堂】第2期:非结构化数据分析技术是忽悠

简介:

大数据概念兴起的同时也带热了非结构化数据分析。传说一个企业中80%的数据都是非结构化数据,如果按占据空间来算,这个比例大体不假,毕竟音视频这类数据真地很大。有这么大的数据量,需要进行分析是很自然的事了,而要分析当然就要有相应的技术手段了。

那为什么说非结构化数据分析技术是忽悠呢?

不存在通用的非结构化数据计算技术


非结构化数据五花八门,有声音图像、文本网页、办公文档、设备日志、....;每类数据的都有各自的计算处理手段,比如语音识别、图像比对、文本搜索、图结构计算等等,但是并不存在一种适用于所有非结构化数据的通用计算技术。语音识别的方法不能用于图像比对、文本搜索和图结构计算也扯不上关系。

一个厂商如果擅长某种技术,那一定会直接宣称自己专业于该领域,而不会泛泛地说自己精于非结构化数据分析。比如人脸识别做得非常精准、或是文本敏感词挖掘的专业公司,显然这样更容易定位用户和应用场景。如果一家公司只说自己擅长非结构化数据分析而不指明具体的领域,那就不知道到底能做些什么了。

面向非结构化数据的通用技术只是存储


虽然许多专业技术领域都可以归类为对非结构化数据的处理,但总体应用范围并不广泛,大多数用户还用不上这些专门技术,而只是需要把这些数据存储下来。非结构化数据没有通用的分析计算技术,但存储和相应的管理(增删检索等)是可以通用化的。非结构化数据占据的空间较大,经常需要不同于结构化数据的特殊存储手段。

不过,如果不是数据量特别大,或者有高并发的检索需求,大多数的网络文件系统(如HDFS)已经能够胜任存储和访问需求。厂家如果只喊能做非结构化数据的存储和基本管理,那会显得没什么技术含量。所以这些厂商会不遗余力地往分析上靠,但没有实质东西。而能提供大容量高性能的访问的专业存储厂商却只会喊存储,而不会刻意提及分析。

通用分析技术在于相伴产生的结构化数据


采集非结构化数据的同时,常常会伴随着采集许多相关的结构化数据,比如音视频的制作人、制作时间、所属类别、时长、...;有些非结构化数据经过处理后也会转变成结构化数据,比如网页日志中拆解出访问人IP、访问时刻、关键搜索词等。所谓的非结构化数据分析,经常实际上是针对这些伴生而出的结构化数据,这个领域有不少较为成熟的通用计算技术(比如关系代数和关系数据库)。

但现在只喊结构化数据显得不够时髦,为了吸引用户,就要把本质上的结构化数据分析说成是非结构化数据分析了。

作为需求方的用户,这时候需要清楚地知道到底要对这些数据做什么处理。如果只是简单存储,那上个HDFS这类开源网络文件系统就够了;如果有高性能访问需求,那要找专业的存储厂商;如果其实要分析的是伴生出来的结构化数据,那就是已经熟悉的数据库类业务了;如果真有特定的处理需求,那也是找专门领域的厂商和技术。总之,不要泛泛地只说需要非结构化数据分析。


原文发布时间为:2017-4-28

本文作者:蒋步星

本文来自云栖社区合作伙伴“数据蒋堂”,了解相关信息可以关注“数据蒋堂”微信公众号

相关文章
|
3月前
|
机器学习/深度学习 搜索推荐 算法
技术感悟之数据分析的演变与未来
本文探讨了数据分析技术的发展历程,从简单的数据收集到复杂的机器学习算法,揭示了技术进步对商业决策、科学研究和社会发展的深远影响。同时,文章也展望了数据分析在未来可能的发展方向和挑战。
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
构建高效数据分析系统的关键技术
【10月更文挑战第5天】构建高效数据分析系统的关键技术
44 0
|
3月前
|
数据挖掘 PyTorch TensorFlow
|
3月前
|
机器学习/深度学习 传感器 人工智能
AI与未来医疗:重塑健康管理新格局随着人工智能(AI)技术的飞速发展,医疗行业正迎来一场前所未有的变革。AI不仅在数据分析、诊断支持方面展现出巨大潜力,还在个性化治疗、远程医疗等多个领域实现了突破性进展。本文将探讨AI技术在医疗领域的具体应用及其对未来健康管理的影响。
人工智能(AI)正在彻底改变医疗行业的面貌。通过深度学习算法和大数据分析,AI能够迅速分析海量的医疗数据,提供精准的诊断和治疗建议。此外,AI在远程医疗、药物研发以及患者管理等方面也展现出了巨大的潜力。本文将详细探讨这些技术的应用实例,并展望其对健康管理的深远影响。
|
2月前
|
SQL 数据采集 数据可视化
深入 Python 数据分析:高级技术与实战应用
本文系统地介绍了Python在高级数据分析中的应用,涵盖数据读取、预处理、探索及可视化等关键环节,并详细展示了聚类分析、PCA、时间序列分析等高级技术。通过实际案例,帮助读者掌握解决复杂问题的方法,提升数据分析技能。使用pandas、matplotlib、seaborn及sklearn等库,提供了丰富的代码示例,便于实践操作。
165 64
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
某A保险公司的 数据图表和数据分析
某A保险公司的 数据图表和数据分析
61 0
某A保险公司的 数据图表和数据分析
|
4月前
|
数据采集 DataWorks 数据挖掘
提升数据分析效率:DataWorks在企业级数据治理中的应用
【8月更文第25天】本文将探讨阿里巴巴云的DataWorks平台如何通过建立统一的数据标准、规范以及实现数据质量监控和元数据管理来提高企业的数据分析效率。我们将通过具体的案例研究和技术实践来展示DataWorks如何简化数据处理流程,减少成本,并加速业务决策。
468 54
|
2月前
|
机器学习/深度学习 算法 数据挖掘
技术感悟之数据分析的奇妙旅程
这篇文章旨在分享我在数据分析领域的探索和心得。通过深入浅出的方式,带领读者了解数据分析的核心概念、工具和应用。希望这些分享能帮助大家更好地理解和应用数据分析,为生活和工作带来更多便利和价值。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
53 0
|
3月前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
46 5