基于阿里云通义千问开发智能写作助手

简介: 现代办公中,撰写邮件、会议记录、报告等任务耗费大量时间。一个智能写作助手能显著提升效率,帮助用户快速生成高质量的文本内容。阿里云通义千问作为阿里巴巴推出的强大大语言模型(LLM),具备出色的自然语言理解与生成能力,非常适合用于开发智能写作工具。本博客将介绍如何基于通义千问构建一个智能写作助手,实现高效的内容生成和编辑功能。

一、项目背景与产品介绍

现代办公中,撰写邮件、会议记录、报告等任务耗费大量时间。一个智能写作助手能显著提升效率,帮助用户快速生成高质量的文本内容。阿里云通义千问作为阿里巴巴推出的强大大语言模型(LLM),具备出色的自然语言理解与生成能力,非常适合用于开发智能写作工具。

本博客将介绍如何基于通义千问构建一个智能写作助手,实现高效的内容生成和编辑功能。

二、系统功能设计
智能写作助手应具备以下功能:

邮件模板生成:根据用户需求生成邮件正文。
会议记录总结:基于输入的会议要点生成会议纪要。
报告初稿撰写:根据指定主题生成报告初稿。
系统架构如下:

阿里云通义千问 API:核心文本生成引擎。
函数计算(FC):处理生成逻辑并返回结果。
API 网关:提供统一接口访问入口。
前端交互界面:供用户输入和查看生成内容。

三、阿里云相关产品使用流程

  1. 通义千问 API 接入

登录阿里云,进入通义千问控制台。
获取AppKey和AppSecret,用于调用 API。
示例调用代码(Python)

import requests
import json

API_URL = "https://qianwen-api.aliyun.com/v1/completions"
APP_KEY = "your_app_key"
APP_SECRET = "your_app_secret"

headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {APP_SECRET}"
}

def generate_text(prompt, max_tokens=500, temperature=0.7):
data = {
"model": "qianwen-chat",
"prompt": prompt,
"max_tokens": max_tokens,
"temperature": temperature
}
response = requests.post(API_URL, headers=headers, data=json.dumps(data))
return response.json().get("choices", [{}])[0].get("text", "生成失败")

调用示例:

prompt = "请为一封商务合作邮件撰写正文,主题是合作机会探讨。"
result = generate_text(prompt)
print(f"生成的邮件内容:\n{result}")

  1. 函数计算(FC)实现写作逻辑

登录阿里云,进入函数计算控制台。
创建新的服务与函数,选择 Python 运行环境,并启用 HTTP 触发器。
部署代码实现邮件、会议记录和报告生成逻辑。
示例函数代码

import json
import requests
import os

def handler(environ, start_response):
try:
request_body = environ['wsgi.input'].read().decode('utf-8')
request_data = json.loads(request_body)
task_type = request_data.get('task_type', 'generic')
prompt = request_data.get('prompt', '')

    api_url = "https://qianwen-api.aliyun.com/v1/completions"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {os.getenv('APP_SECRET')}"
    }

    # 根据不同任务类型生成不同的内容
    task_prompts = {
        "email": f"请帮我写一封关于{prompt}的正式商务邮件。",
        "meeting_notes": f"根据以下会议要点生成会议纪要:{prompt}",
        "report": f"请根据以下主题撰写报告初稿:{prompt}"
    }

    payload = {
        "model": "qianwen-chat",
        "prompt": task_prompts.get(task_type, prompt),
        "max_tokens": 500,
        "temperature": 0.7
    }

    response = requests.post(api_url, headers=headers, json=payload)
    generated_text = response.json().get("choices", [{}])[0].get("text", "生成失败")

    start_response('200 OK', [('Content-Type', 'application/json')])
    return [json.dumps({"generated_text": generated_text}).encode('utf-8')]
except Exception as e:
    start_response('500 Internal Server Error', [('Content-Type', 'text/plain')])
    return [str(e).encode('utf-8')]
  1. API 网关配置

登录阿里云,进入API 网关控制台。
创建 API 服务并绑定到函数计算。
设置路径为/generate-text,方法为 POST。

  1. 前端展示界面示例
<!DOCTYPE html>
<html lang="zh">
<head>
    <meta charset="UTF-8">
    <title>智能写作助手</title>
</head>
<body>
    <h1>智能写作助手</h1>
    <select id="task_type">
        <option value="email">撰写邮件</option>
        <option value="meeting_notes">生成会议纪要</option>
        <option value="report">撰写报告</option>
    </select>
    <textarea id="prompt" placeholder="请输入生成内容的提示"></textarea><br>
    <button onclick="generateContent()">生成内容</button>
    <p id="result"></p>

    <script>
        async function generateContent() {
   
            const taskType = document.getElementById('task_type').value;
            const prompt = document.getElementById('prompt').value;
            const response = await fetch('https://your_api_gateway_url/generate-text', {
   
                method: 'POST',
                headers: {
   'Content-Type': 'application/json'},
                body: JSON.stringify({
    task_type: taskType, prompt: prompt })
            });
            const result = await response.json();
            document.getElementById('result').innerText = result.generated_text;
        }
    </script>
</body>
</html>

四、系统优化建议
个性化定制:根据用户喜好保存常用模板,提供个性化内容生成。
多语言支持:拓展支持其他语言,提高写作助手的实用性。
安全与隐私保护:使用 SSL 加密,确保用户数据安全。
通过上述示例,您可以快速构建一个基于阿里云通义千问的智能写作助手,有效提升办公效率,为用户提供便捷的文本生成体验。希望本博客能为您提供有价值的技术参考!

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
4月前
|
数据采集 人工智能 搜索推荐
智能新纪元:多模态大模型如何重塑人机交互
智能新纪元:多模态大模型如何重塑人机交互
292 113
|
5月前
|
SQL 人工智能 自然语言处理
阿里云 CIO 蒋林泉:AI 大模型时代,我们如何用 RIDE 实现 RaaS 的首次落地?
本文整理自阿里云智能集团 CIO 蒋林泉在 AICon 2025 深圳的演讲,分享了阿里云在大模型应用落地中的实践经验。通过多个数字人项目案例,探讨了企业在 AI 应用中的组织转型、业务识别、产品定义与工程落地等关键环节,并提出了 RIDE 方法论(重组、识别、定义、执行),助力企业实现 AI 有效落地。
|
5月前
|
人工智能 Rust 并行计算
AI大模型开发语言排行
AI大模型开发涉及多种编程语言:Python为主流,用于算法研发;C++/CUDA优化性能;Go/Rust用于工程部署;Java适配企业系统;Julia等小众语言用于科研探索。
1727 127
|
4月前
|
人工智能 前端开发 JavaScript
最佳实践3:用通义灵码开发一款 App
本示例演示使用通义灵码,基于React Native与Node.js开发跨平台类通义App,重点展示iOS端实现。涵盖前端页面生成、后端代码库自动生成、RTK Query通信集成及Qwen API调用全过程,体现灵码在全栈开发中的高效能力。(238字)
529 11
|
5月前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
842 12
|
5月前
|
存储 机器学习/深度学习 人工智能
云栖 2025|阿里云 Qwen3 系列领衔:AI 模型全栈突破与开发者落地指南
阿里云发布Qwen3全栈AI体系,七大模型升级、性能全球领先,开源生态稳居第一。从底层基建到开发工具链全面优化,助力企业高效落地AI应用,共建超级AI云生态。
1994 11
|
5月前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
1193 6

热门文章

最新文章