三分钟让Dify接入Ollama部署的本地大模型!

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 本文详细介绍了如何在 Dify 中接入 Ollama 模型,包括模型添加、参数配置及常见问题解决。通过运行 Ollama 服务并与 qwen2:0.5b 模型交互,实现本地化大模型应用开发。同时提供了 Docker、Mac、Linux 和 Windows 平台上 Ollama 的部署与环境变量设置指南,帮助开发者快速上手。更多实战技巧可访问[编程严选网](http://www.javaedge.cn/)或关注作者的 Github 仓库。

本文已收录在Github关注我,紧跟本系列专栏文章,咱们下篇再续!

  • 🚀 魔都架构师 | 全网30W技术追随者
  • 🔧 大厂分布式系统/数据中台实战专家
  • 🏆 主导交易系统百万级流量调优 & 车联网平台架构
  • 🧠 AIGC应用开发先行者 | 区块链落地实践者
  • 🌍 以技术驱动创新,我们的征途是改变世界!
  • 👉 实战干货:编程严选网

1 运行 Ollama

与 qwen2:0.5b 聊天

ollama run qwen2:0.5b

启动成功后,ollama 在本地 11434 端口启动了一个 API 服务,可通过 http://localhost:11434 访问。

2 Dify 中接入 Ollama

2.1 添加模型

设置 > 模型供应商 > Ollama 添加模型:

填写 LLM 信息:

模型名称:以 ollama 返回的为准

$ ollama ls
NAME          ID              SIZE      MODIFIED
qwen2:0.5b    6f48b936a09f    352 MB    7 months ago

那就得填写:qwen2:0.5b

基础 URL:http://<your-ollama-endpoint-domain>:11434

此处需填写 Ollama 服务地址。如果填写公开 URL 后仍提示报错,请参考常见问题,修改环境变量并使得 Ollama 服务可被所有 IP 访问。

若 Dify 为:http://192.168.65.0:11434

  • Docker 部署,建议填写局域网 IP 地址,如:http://192.168.1.100:11434 或 Docker 容器的内部 IP 地址,例如:http://host.docker.internal:11434

  • 若为本地源码部署,可填 http://localhost:11434

  • 模型类型:对话

  • 模型上下文长度:4096

    模型的最大上下文长度,若不清楚可填写默认值 4096。

  • 最大 token 上限:4096

    模型返回内容的最大 token 数量,若模型无特别说明,则可与模型上下文长度保持一致。

  • 是否支持 Vision:

    当模型支持图片理解(多模态)勾选此项,如 llava

点击 "保存" 校验无误后即可在应用中使用该模型。

Embedding 模型接入方式与 LLM 类似,只需将模型类型改为 Text Embedding 即可。

2.2 使用 Ollama 模型

进入需要配置的 App 提示词编排页面,选择 Ollama 供应商下的 llava 模型,配置模型参数后即可使用:

3 报错

如用 Docker 部署 Dify 和 Ollama,可能遇到报错:

httpconnectionpool (host=127.0.0.1, port=11434): max retries exceeded with url:/api/chat (Caused by NewConnectionError ('<urllib3.connection.HTTPConnection object at 0x7f8562812c20>: fail to establish a new connection:[Errno 111] Connection refused'))

3.1 原因

Docker 容器无法访问 Ollama 服务。localhost 通常指的是容器本身,而不是主机或其他容器。要解决此问题,你要将 Ollama 服务暴露给网络。

3.2 解决方案

3.2.1 在 Mac 上设置环境变量

如果 Ollama 作为 macOS 应用程序运行,调用 launchctl setenv 设置环境变量:

$ launchctl setenv OLLAMA_HOST "0.0.0.0"

重启 Ollama 应用程序。

若以上步骤无效,毕竟问题在 docker 内部,你应该连接到 host.docker.internal,才能访问 docker 的主机,所以将 localhost 替换为 host.docker.internal ,服务就可以生效了:

http://host.docker.internal:11434

在 Linux 上设置环境变量

如果 Ollama 作为 systemd 服务运行,应该使用 systemctl 设置环境变量:

  1. 通过调用 systemctl edit ollama.service 编辑 systemd 服务。这将打开一个编辑器。

  2. 对于每个环境变量,在 [Service] 部分下添加一行 Environment

    [Service]
    Environment="OLLAMA_HOST=0.0.0.0"
    
  3. 保存并退出。

  4. 重载 systemd 并重启 Ollama:

    systemctl daemon-reload
    systemctl restart ollama
    

在 Windows 上设置环境变量

在 Windows 上,Ollama 继承了你的用户和系统环境变量。

  1. 首先通过任务栏点击 Ollama 退出程序

  2. 从控制面板编辑系统环境变量

  3. 为你的用户账户编辑或新建变量,比如 OLLAMA_HOSTOLLAMA_MODELS 等。

  4. 点击 OK / 应用保存

  5. 在一个新的终端窗口运行 ollama

如何在我的网络上暴露 Ollama?

Ollama 默认绑定 127.0.0.1 端口 11434。通过 OLLAMA_HOST 环境变量更改绑定地址。

参考:

目录
相关文章
|
2月前
|
人工智能 运维 Serverless
0 代码,一键部署 Qwen3
依托于阿里云函数计算 FC 算力,Serverless + AI 开发平台 FunctionAI 现已提供模型服务、应用模版两种部署方式辅助您部署 Qwen3 系列模型。完成模型部署后,您即可与模型进行对话体验;或以 API 形式进行调用,接入 AI 应用中,欢迎您立即体验。
|
3月前
|
人工智能 并行计算 持续交付
如何使用龙蜥衍生版KOS,2步实现大模型训练环境部署
大幅降低了用户开发和应用大模型的技术门槛。
|
3月前
|
人工智能 弹性计算 自然语言处理
从0到1部署大模型,计算巢模型市场让小白秒变专家
阿里云计算巢模型市场依托阿里云弹性计算资源,支持私有化部署,集成通义千问、通义万象、Stable Diffusion等领先AI模型,覆盖大语言模型、文生图、多模态、文生视频等场景。模型部署在用户云账号下,30分钟极速上线,保障数据安全与权限自主控制,适用于企业级私有部署及快速原型验证场景。
|
3月前
|
数据采集 机器学习/深度学习 搜索推荐
利用通义大模型构建个性化推荐系统——从数据预处理到实时API部署
本文详细介绍了基于通义大模型构建个性化推荐系统的全流程,涵盖数据预处理、模型微调、实时部署及效果优化。通过采用Qwen-72B结合LoRA技术,实现电商场景下CTR提升58%,GMV增长12.7%。文章分析了特征工程、多任务学习和性能调优的关键步骤,并探讨内存优化与蒸馏实践。最后总结了大模型在推荐系统中的适用场景与局限性,提出未来向MoE架构和因果推断方向演进的建议。
514 10
|
3月前
|
存储 文字识别 自然语言处理
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
385 0
|
3月前
|
缓存 自然语言处理 监控
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
1008 14
|
3月前
|
存储 编解码 Prometheus
大模型推理加速实战:vLLM 部署 Llama3 的量化与批处理优化指南
本文详解如何通过量化与批处理优化,在vLLM中高效部署Llama3大模型。涵盖内存管理、推理加速及混合策略,提升吞吐量并降低延迟,适用于大规模语言模型部署实践。
921 2
|
3月前
|
并行计算 API Python
vLLM 部署 Qwen3
本文介绍了在特定环境下安装和使用 vLLM 的步骤。环境配置包括 CUDA 12.2、40GB 显存,使用 conda 进行 Python 包管理,并基于 Qwen3-8B 模型。首先通过创建 conda 环境并安装 vLLM 实现部署,接着启动 API 服务以支持对话功能。文中提供了 curl 和 Python 两种调用方式示例,方便用户测试与集成。
3983 1
|
2月前
|
人工智能 搜索推荐 Linux
ollama部署本地DeepSeek大模型
本地部署大模型具有省钱省心、数据安全、使用自由、无需联网、量身定制及响应高效等优势。DeepSeek 提供满血版与多种蒸馏版模型,适配不同硬件条件。通过 Ollama 可便捷部署,并结合客户端工具如 AnythingLLM 提升交互体验,打造个性化本地 AI 助手。
387 0