Python Requests 的高级使用技巧:应对复杂 HTTP 请求场景

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本文介绍了如何使用 Python 的 `requests` 库应对复杂的 HTTP 请求场景,包括 Spider Trap(蜘蛛陷阱)、SESSION 访问限制和请求频率限制。通过代理、CSS 类链接数控制、多账号切换和限流算法等技术手段,提高爬虫的稳定性和效率,增强在反爬虫环境中的生存能力。文中提供了详细的代码示例,帮助读者掌握这些高级用法。

爬虫代理

介绍

网络爬虫(Web Crawler)是自动化的数据采集工具,用于从网络上提取所需的数据。然而,随着反爬虫技术的不断进步,很多网站增加了复杂的防护机制,使得数据采集变得更加困难。在这种情况下,Python 的 requests 库因其易用性和强大的功能,成为了开发爬虫的常用工具。然而,在复杂的 HTTP 请求场景中,标准的 requests 使用往往不够灵活,爬虫需要结合代理、会话控制、限流等高级技巧来更好地适应不同网站的反爬限制。

本文将针对三种典型的复杂 HTTP 请求场景,分别为 Spider Trap(蜘蛛陷阱)、SESSION访问限制和请求频率限制,进行深入的技术分析,并给出实际代码示例,帮助读者掌握 Python Requests 的高级用法。

技术分析

1. 应对 Spider Trap(蜘蛛陷阱)

Spider Trap 是一种通过设置大量链接或无限循环的链接结构来消耗爬虫资源的技术。爬虫陷入这些陷阱后,可能会在特定网页中无限循环,导致资源浪费,甚至引发封禁。为避免此问题,我们可以采取以下措施:

  • CSS类链接数控制:限制同一页面中每个 CSS 类中能爬取的最大链接数,从而防止在陷阱页面中过度抓取。
  • URL去重:通过哈希或布隆过滤器(Bloom Filter)对已访问的 URL 进行去重,避免重复抓取。

以下代码展示了如何通过 Python Requests 结合代理和 CSS 类链接数控制来实现对 Spider Trap 的防护。

import requests
from bs4 import BeautifulSoup
import hashlib

# 代理信息,需替换成实际的亿牛云爬虫代理配置 www.16yun.cn
proxy = {
   
    "http": "http://username:password@proxy.16yun.cn:18000",
    "https": "http://username:password@proxy.16yun.cn:18000"
}

# 用于记录访问过的URL
visited_urls = set()

# 爬取函数
def crawl(url, max_links_per_class=10):
    if url in visited_urls:
        print(f"已访问过 URL:{url}")
        return

    try:
        # 使用代理发送请求
        response = requests.get(url, proxies=proxy, timeout=10)
        response.raise_for_status()
        visited_urls.add(url)  # 标记该 URL 为已访问
        soup = BeautifulSoup(response.text, 'html.parser')

        # 统计每个 CSS 类中的链接数
        class_link_count = {
   }

        for link in soup.find_all("a", href=True):
            # 计算每个链接的哈希值
            link_url = link['href']
            link_class = link.get("class", [""])[0]

            # 更新每个 CSS 类的链接数
            class_link_count[link_class] = class_link_count.get(link_class, 0) + 1

            # 超过最大链接数则跳过
            if class_link_count[link_class] > max_links_per_class:
                print(f"跳过过多链接的类:{link_class}")
                continue

            # 递归爬取新链接
            if link_url not in visited_urls:
                crawl(link_url)

    except requests.RequestException as e:
        print(f"请求失败:{e}")

# 开始爬取
crawl("http://example.com")

2. SESSION访问限制

某些网站会通过观察用户的操作模式来区分是普通用户还是爬虫。例如,频繁的请求和重复性高的操作可能被视为异常,导致账号被限制访问。针对这种情况,我们可以模拟用户的正常操作,比如在页面之间设置合理的等待时间,同时通过多个账号轮换访问来减少单一 SESSION 的负载。

以下代码示例展示了如何模拟多账号登录,并进行合理的延时,避免触发访问限制。

import requests
import time
import random

# 代理信息,需替换成实际的亿牛云爬虫代理配置 www.16yun.cn
proxy = {
   
    "http": "http://username:password@proxy.16yun.cn:18000",
    "https": "http://username:password@proxy.16yun.cn:18000"
}

# 用户账号列表
accounts = [
    {
   "username": "user1", "password": "pass1"},
    {
   "username": "user2", "password": "pass2"},
    # 可添加更多账号
]

def login(account):
    session = requests.Session()
    login_url = "http://example.com/login"

    try:
        # 使用POST方法模拟登录请求
        response = session.post(login_url, data=account, proxies=proxy)
        response.raise_for_status()

        # 检查登录状态
        if "欢迎" in response.text:
            print(f"{account['username']} 登录成功")
            return session
        else:
            print(f"{account['username']} 登录失败")
            return None

    except requests.RequestException as e:
        print(f"请求失败:{e}")
        return None

# 主循环
for account in accounts:
    session = login(account)
    if session:
        # 模拟正常操作,随机延时
        for _ in range(5):
            try:
                response = session.get("http://example.com/data", proxies=proxy)
                response.raise_for_status()
                print(f"获取数据:{response.text[:100]}...")

                # 模拟用户的延时
                time.sleep(random.uniform(1, 3))

            except requests.RequestException as e:
                print(f"请求失败:{e}")

    # 切换账号
    time.sleep(random.uniform(5, 10))

3. 请求频率限制

为了防止频繁请求造成服务器压力,很多网站设置了请求频率限制。常用的限流算法包括令牌桶漏桶。这些算法通过控制请求速度和时间间隔来实现稳定的数据请求。

以下示例展示了通过限流控制请求频率的方式,以避免触发请求频率限制。

import requests
import time
import threading
import queue

# 代理信息,需替换成实际的亿牛云爬虫代理配置 www.16yun.cn
proxy = {
   
    "http": "http://username:password@proxy.16yun.cn:18000",
    "https": "http://username:password@proxy.16yun.cn:18000"
}

# 配置令牌桶
class TokenBucket:
    def __init__(self, rate, capacity):
        self.rate = rate          # 每秒生成的令牌数
        self.capacity = capacity  # 桶的最大容量
        self.tokens = capacity
        self.last_refill_time = time.time()

    def acquire(self):
        current_time = time.time()
        elapsed = current_time - self.last_refill_time
        # 更新令牌数量
        self.tokens = min(self.capacity, self.tokens + elapsed * self.rate)
        self.last_refill_time = current_time

        # 判断是否可以进行请求
        if self.tokens >= 1:
            self.tokens -= 1
            return True
        else:
            return False

# 创建令牌桶,限制每秒最多3个请求
token_bucket = TokenBucket(rate=3, capacity=3)

def limited_request(url):
    while not token_bucket.acquire():
        time.sleep(0.1)  # 等待令牌
    try:
        response = requests.get(url, proxies=proxy)
        print(f"获取数据:{response.text[:100]}...")
    except requests.RequestException as e:
        print(f"请求失败:{e}")

# 测试请求
urls = ["http://example.com/data"] * 10
for url in urls:
    threading.Thread(target=limited_request, args=(url,)).start()

结论

本文深入探讨了 Python Requests 的高级使用技巧,帮助读者在面对复杂的 HTTP 请求场景时更加得心应手。通过代理的使用、CSS 类链接数控制、多账号 SESSION 切换、以及限流算法的实现,我们可以大幅提高爬虫的稳定性与效率,提升在反爬虫环境中的生存能力。掌握这些技巧不仅有助于提高抓取数据的成功率,同时也为更复杂的反爬需求打下了扎实的技术基础。

相关文章
|
24天前
|
JavaScript 前端开发 API
Node.js中发起HTTP请求的五种方式
以上五种方式,尽管只是冰山一角,但已经足以让编写Node.js HTTP请求的你,在连接世界的舞台上演奏出华丽的乐章。从原生的 `http`到现代的 `fetch`,每种方式都有独特的风格和表现力,让你的代码随着项目的节奏自由地舞动。
165 65
|
1月前
|
JSON 数据格式 Python
解决Python requests库POST请求参数顺序问题的方法。
总之,想要在Python的requests库里保持POST参数顺序,你要像捋顺头发一样捋顺它们,在向服务器炫耀你那有条不紊的数据前。抓紧手中的 `OrderedDict`与 `json`这两把钥匙,就能向服务端展示你的请求参数就像经过高端配置的快递包裹,里面的商品摆放井井有条,任何时候开箱都是一种享受。
57 10
|
1月前
|
网络协议 API Python
解析http.client与requests在Python中的性能比较和改进策略。
最后,需要明确的是,这两种库各有其优点和适用场景。`http.client` 更适合于基础且并行的请求,`requests` 则因其易用且强大的功能,更适用于复杂的 HTTP 场景。对于哪种更适合你的应用,可能需要你自己进行实际的测试来确定。
67 10
|
1月前
|
XML JSON 安全
分析参数顺序对Python requests库进行POST请求的影响。
最后,尽管理论上参数顺序对POST请求没影响,但编写代码时仍然建议遵循一定的顺序和规范,比如URL总是放在第一位,随后是data或json,最后是headers,这样可以提高代码的可读性和维护性。在处理复杂的请求时,一致的参数顺序有助于调试和团队协作。
94 9
|
2月前
|
网络协议 API 开发者
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
83 19
|
2月前
|
Go
在golang中发起http请求以获取访问域名的ip地址实例(使用net, httptrace库)
这只是追踪我们的行程的简单方法,不过希望你跟着探险家的脚步,即使是在互联网的隧道中,也可以找到你想去的地方。接下来就是你的探险之旅了,祝你好运!
108 26
|
2月前
|
JSON 安全 网络协议
HTTP/HTTPS协议(请求响应模型、状态码)
本文简要介绍了HTTP与HTTPS协议的基础知识。HTTP是一种无状态的超文本传输协议,基于TCP/IP,常用80端口,通过请求-响应模型实现客户端与服务器间的通信;HTTPS为HTTP的安全版本,基于SSL/TLS加密技术,使用443端口,确保数据传输的安全性。文中还详细描述了HTTP请求方法(如GET、POST)、请求与响应头字段、状态码分类及意义,并对比了两者在请求-响应模型中的安全性差异。
247 20
|
3月前
|
JSON API 数据安全/隐私保护
使用curl命令在服务器上执行HTTP请求
总的来说,curl是一个非常强大的工具,它可以让你在命令行中发送各种类型的HTTP请求。通过学习和实践,你可以掌握这个工具,使你的工作更加高效。
198 30
|
3月前
|
数据采集 存储 开发者
如何动态调整Python爬虫的Request请求延迟
如何动态调整Python爬虫的Request请求延迟
145 13
|
测试技术 Python
python接口自动化测试 - requests库的post请求进行文件下载
python接口自动化测试 - requests库的post请求进行文件下载
1353 0

推荐镜像

更多