Python Requests 的高级使用技巧:应对复杂 HTTP 请求场景

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本文介绍了如何使用 Python 的 `requests` 库应对复杂的 HTTP 请求场景,包括 Spider Trap(蜘蛛陷阱)、SESSION 访问限制和请求频率限制。通过代理、CSS 类链接数控制、多账号切换和限流算法等技术手段,提高爬虫的稳定性和效率,增强在反爬虫环境中的生存能力。文中提供了详细的代码示例,帮助读者掌握这些高级用法。

爬虫代理

介绍

网络爬虫(Web Crawler)是自动化的数据采集工具,用于从网络上提取所需的数据。然而,随着反爬虫技术的不断进步,很多网站增加了复杂的防护机制,使得数据采集变得更加困难。在这种情况下,Python 的 requests 库因其易用性和强大的功能,成为了开发爬虫的常用工具。然而,在复杂的 HTTP 请求场景中,标准的 requests 使用往往不够灵活,爬虫需要结合代理、会话控制、限流等高级技巧来更好地适应不同网站的反爬限制。

本文将针对三种典型的复杂 HTTP 请求场景,分别为 Spider Trap(蜘蛛陷阱)、SESSION访问限制和请求频率限制,进行深入的技术分析,并给出实际代码示例,帮助读者掌握 Python Requests 的高级用法。

技术分析

1. 应对 Spider Trap(蜘蛛陷阱)

Spider Trap 是一种通过设置大量链接或无限循环的链接结构来消耗爬虫资源的技术。爬虫陷入这些陷阱后,可能会在特定网页中无限循环,导致资源浪费,甚至引发封禁。为避免此问题,我们可以采取以下措施:

  • CSS类链接数控制:限制同一页面中每个 CSS 类中能爬取的最大链接数,从而防止在陷阱页面中过度抓取。
  • URL去重:通过哈希或布隆过滤器(Bloom Filter)对已访问的 URL 进行去重,避免重复抓取。

以下代码展示了如何通过 Python Requests 结合代理和 CSS 类链接数控制来实现对 Spider Trap 的防护。

import requests
from bs4 import BeautifulSoup
import hashlib

# 代理信息,需替换成实际的亿牛云爬虫代理配置 www.16yun.cn
proxy = {
   
    "http": "http://username:password@proxy.16yun.cn:18000",
    "https": "http://username:password@proxy.16yun.cn:18000"
}

# 用于记录访问过的URL
visited_urls = set()

# 爬取函数
def crawl(url, max_links_per_class=10):
    if url in visited_urls:
        print(f"已访问过 URL:{url}")
        return

    try:
        # 使用代理发送请求
        response = requests.get(url, proxies=proxy, timeout=10)
        response.raise_for_status()
        visited_urls.add(url)  # 标记该 URL 为已访问
        soup = BeautifulSoup(response.text, 'html.parser')

        # 统计每个 CSS 类中的链接数
        class_link_count = {
   }

        for link in soup.find_all("a", href=True):
            # 计算每个链接的哈希值
            link_url = link['href']
            link_class = link.get("class", [""])[0]

            # 更新每个 CSS 类的链接数
            class_link_count[link_class] = class_link_count.get(link_class, 0) + 1

            # 超过最大链接数则跳过
            if class_link_count[link_class] > max_links_per_class:
                print(f"跳过过多链接的类:{link_class}")
                continue

            # 递归爬取新链接
            if link_url not in visited_urls:
                crawl(link_url)

    except requests.RequestException as e:
        print(f"请求失败:{e}")

# 开始爬取
crawl("http://example.com")

2. SESSION访问限制

某些网站会通过观察用户的操作模式来区分是普通用户还是爬虫。例如,频繁的请求和重复性高的操作可能被视为异常,导致账号被限制访问。针对这种情况,我们可以模拟用户的正常操作,比如在页面之间设置合理的等待时间,同时通过多个账号轮换访问来减少单一 SESSION 的负载。

以下代码示例展示了如何模拟多账号登录,并进行合理的延时,避免触发访问限制。

import requests
import time
import random

# 代理信息,需替换成实际的亿牛云爬虫代理配置 www.16yun.cn
proxy = {
   
    "http": "http://username:password@proxy.16yun.cn:18000",
    "https": "http://username:password@proxy.16yun.cn:18000"
}

# 用户账号列表
accounts = [
    {
   "username": "user1", "password": "pass1"},
    {
   "username": "user2", "password": "pass2"},
    # 可添加更多账号
]

def login(account):
    session = requests.Session()
    login_url = "http://example.com/login"

    try:
        # 使用POST方法模拟登录请求
        response = session.post(login_url, data=account, proxies=proxy)
        response.raise_for_status()

        # 检查登录状态
        if "欢迎" in response.text:
            print(f"{account['username']} 登录成功")
            return session
        else:
            print(f"{account['username']} 登录失败")
            return None

    except requests.RequestException as e:
        print(f"请求失败:{e}")
        return None

# 主循环
for account in accounts:
    session = login(account)
    if session:
        # 模拟正常操作,随机延时
        for _ in range(5):
            try:
                response = session.get("http://example.com/data", proxies=proxy)
                response.raise_for_status()
                print(f"获取数据:{response.text[:100]}...")

                # 模拟用户的延时
                time.sleep(random.uniform(1, 3))

            except requests.RequestException as e:
                print(f"请求失败:{e}")

    # 切换账号
    time.sleep(random.uniform(5, 10))

3. 请求频率限制

为了防止频繁请求造成服务器压力,很多网站设置了请求频率限制。常用的限流算法包括令牌桶漏桶。这些算法通过控制请求速度和时间间隔来实现稳定的数据请求。

以下示例展示了通过限流控制请求频率的方式,以避免触发请求频率限制。

import requests
import time
import threading
import queue

# 代理信息,需替换成实际的亿牛云爬虫代理配置 www.16yun.cn
proxy = {
   
    "http": "http://username:password@proxy.16yun.cn:18000",
    "https": "http://username:password@proxy.16yun.cn:18000"
}

# 配置令牌桶
class TokenBucket:
    def __init__(self, rate, capacity):
        self.rate = rate          # 每秒生成的令牌数
        self.capacity = capacity  # 桶的最大容量
        self.tokens = capacity
        self.last_refill_time = time.time()

    def acquire(self):
        current_time = time.time()
        elapsed = current_time - self.last_refill_time
        # 更新令牌数量
        self.tokens = min(self.capacity, self.tokens + elapsed * self.rate)
        self.last_refill_time = current_time

        # 判断是否可以进行请求
        if self.tokens >= 1:
            self.tokens -= 1
            return True
        else:
            return False

# 创建令牌桶,限制每秒最多3个请求
token_bucket = TokenBucket(rate=3, capacity=3)

def limited_request(url):
    while not token_bucket.acquire():
        time.sleep(0.1)  # 等待令牌
    try:
        response = requests.get(url, proxies=proxy)
        print(f"获取数据:{response.text[:100]}...")
    except requests.RequestException as e:
        print(f"请求失败:{e}")

# 测试请求
urls = ["http://example.com/data"] * 10
for url in urls:
    threading.Thread(target=limited_request, args=(url,)).start()

结论

本文深入探讨了 Python Requests 的高级使用技巧,帮助读者在面对复杂的 HTTP 请求场景时更加得心应手。通过代理的使用、CSS 类链接数控制、多账号 SESSION 切换、以及限流算法的实现,我们可以大幅提高爬虫的稳定性与效率,提升在反爬虫环境中的生存能力。掌握这些技巧不仅有助于提高抓取数据的成功率,同时也为更复杂的反爬需求打下了扎实的技术基础。

相关文章
|
16天前
|
JSON API 数据格式
Python中获取HTTP请求响应体的详解
本文介绍了如何使用Python的`requests`和`urllib`库发送HTTP请求并处理响应体。`requests`库简化了HTTP请求过程,适合快速开发;`urllib`库则更为底层,适用于性能要求较高的场景。文章详细演示了发送GET请求、处理JSON响应等常见操作。
|
26天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
42 7
|
22天前
|
前端开发 JavaScript Java
如何捕获和处理HTTP GET请求的异常
如何捕获和处理HTTP GET请求的异常
|
24天前
|
开发者
HTTP 协议请求方法的发展历程
【10月更文挑战第21天】
|
24天前
|
安全
HTTP 协议的请求方法
【10月更文挑战第21天】
|
24天前
|
缓存 安全 前端开发
HTTP 协议的请求方法在实际应用中有哪些注意事项?
【10月更文挑战第29天】HTTP协议的请求方法在实际应用中需要根据具体的业务场景和需求,合理选择和使用,并注意各种方法的特点和限制,以确保网络通信的安全、高效和数据的一致性。
|
9天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
15天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
15天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!