NumPy 教程 之 NumPy 数据类型 10
NumPy 数据类型
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。数据类型对象 (dtype)
数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::
数据的类型(整数,浮点数或者 Python 对象)
数据的大小(例如, 整数使用多少个字节存储)
数据的字节顺序(小端法或大端法)
在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
如果数据类型是子数组,那么它的形状和数据类型是什么。
字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
dtype 对象是使用以下语法构造的:
numpy.dtype(object, align, copy)
object - 要转换为的数据类型对象
align - 如果为 true,填充字段使其类似 C 的结构体。
copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用
实例
接下来我们可以通过实例来理解。
下面的示例定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。
实例 8
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
print(a)
输出结果为:
[('abc', 21, 50.0), ('xyz', 18, 75.0)]