Hive【基础知识 02-1】【Hive CLI 命令行工具使用】【准备阶段-建库、建表、导入数据、编写测试SQL脚本并上传HDFS】

简介: 【4月更文挑战第7天】Hive【基础知识 02-1】【Hive CLI 命令行工具使用】【准备阶段-建库、建表、导入数据、编写测试SQL脚本并上传HDFS】

why

【为了测试CLI和Beeline命令行工具,这里先创建一个数据库和表并导入一些数据】

1. 创建数据库

# 创建数据库
hive> CREATE DATABASE IF NOT EXISTS hive_test
    > COMMENT 'hive database for test'
    > LOCATION '/tmp/hive/test'
    > WITH DBPROPERTIES ('create'='yuanzhengme');
OK
Time taken: 0.453 seconds

可以看到HDFS的test目录已被创建:

在这里插入图片描述
可以看到MySQL数据库的元数据也被录入了:

在这里插入图片描述

2. 创建表

# 创建表 【这里不再贴出hive的日志】
hive> use hive_test;
hive> create table if not exists hive_test.word_count(word STRING, count INT) row format delimited fields terminated by ',' lines terminated by '\n' stored as textfile;

3. 导入数据

WordCount.txt 文件内容如下:

[root@tcloud wordCount]# cat ./WordCount.txt
spark,3
hive,3
hadoop,2
kafka,1
hbase,1
# 导入数据 【这里不再贴出hive的日志】
hive> load data local inpath '/home/spark/testFile/wordCount/WordCount.txt' overwrite into table word_count;

验证一下:

可以看到hdfs是已经有WordCount.txt文件了:

在这里插入图片描述
可以看到MySQL数据库的元数据也被录入了:

在这里插入图片描述验证一下:

hive> select * from word_count;
OK
spark   3
hive    3
hadoop  2
kafka   1
hbase   1
Time taken: 5.871 seconds, Fetched: 5 row(s)

4. 编写测试SQL脚本并上传HDFS

-- 其中  hive_test.sql 内容如下
select * from hive_test.word_count;

添加到hdfs:

[root@tcloud ~]# hdfs dfs -put /home/hive/testFile/hive_test.sql /tmp/hive/test

可以看到hdfs目标文件已经有hive_test.sql文件了:
在这里插入图片描述
读取一下:

[root@tcloud ~]# hdfs dfs -cat /tmp/hive/test/hive_test.sql
select * from hive_test.word_count;
目录
相关文章
|
6月前
|
SQL HIVE
【Hive SQL 每日一题】环比增长率、环比增长率、复合增长率
该文介绍了环比增长率、同比增长率和复合增长率的概念及计算公式,并提供了SQL代码示例来计算商品的月度增长率。环比增长率是相邻两期数据的增长率,同比增长率是与去年同期相比的增长率,复合增长率则是连续时间段内平均增长的速率。文章还包含了一组销售数据用于演示如何运用这些增长率进行计算。
245 4
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
60 3
|
1月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
34 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
82 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
37 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
46 0
|
4月前
|
SQL 分布式计算 关系型数据库
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
67 2
|
4月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何使用Flink SQL连接带有Kerberos认证的Hive
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL HIVE
【Hive SQL 每日一题】统计用户连续下单的日期区间
该SQL代码用于统计用户连续下单的日期区间。首先按`user_id`和`order_date`分组并去除重复,然后使用`row_number()`标记行号,并通过`date_sub`与行号计算潜在的连续日期。接着按用户ID和计算后的日期分组,排除连续订单数少于2的情况,最后提取连续下单的起始和结束日期。输出结果展示了用户连续下单的日期范围。
231 0
|
SQL 数据库 数据安全/隐私保护