[AIGC 大数据基础] 浅谈hdfs

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: [AIGC 大数据基础] 浅谈hdfs

HDFS介绍

什么是HDFS?

HDFS(Hadoop Distributed File System)是Apache Hadoop生态系统的一部分,是一个分布式文件系统。它被设计用于存储和处理大规模数据集,并且能够容错、高可靠和高性能地处理文件。


HDFS是为了支持Hadoop的分布式计算和存储而开发的,是Hadoop的核心组件之一。它可以在普通的硬件上运行,并且可以适应大型数据集和并行计算的需求。


HDFS使用了主从架构,其中一个节点作为主节点(NameNode),负责存储文件的元数据信息,如文件的名称、大小、创建时间等。其他节点称为从节点(DataNode),负责存储实际的文件数据。

HDFS的特点

高容错性

HDFS是一个高容错性的文件系统,它通过数据冗余和自动故障恢复来保证数据的可靠性。HDFS会将文件的数据和校验和存储在多个节点上,一旦某个节点发生故障,系统会自动将数据恢复到其他节点上。

高可扩展性

HDFS可以处理大规模的数据集,它支持水平扩展,可以通过添加更多的节点来增加存储容量和计算能力。这使得HDFS能够适应不断增长的数据量和计算需求。

高吞吐量

HDFS是为了高吞吐量的数据访问而设计的。它支持数据流式访问,能够并行读取和写入大文件。这使得HDFS在大数据处理和分析场景下具有较好的性能表现。

适用于批处理

HDFS适用于批处理作业,可以高效地处理大规模数据集上的批量计算任务。它提供了高可靠的数据存储和访问接口,可以与Hadoop的其他组件无缝集成,如MapReduce等。

HDFS的应用场景

HDFS广泛应用于大数据领域,特别是与Hadoop生态系统相结合的场景,包括:

  • 大数据存储和处理:HDFS提供了高可靠性和高性能的数据存储和访问能力,适用于大规模数据集的存储和处理。
  • 数据仓库:HDFS可以作为数据仓库,用于存储结构化和非结构化数据,支持离线数据分析和处理。
  • 分布式日志收集:HDFS可以用来存储分布式系统的日志数据,为日志分析和故障排查提供支持。
  • 大规模文件传输:HDFS可以通过网络高效地传输大文件,适用于大规模数据集的离线传输需求。

总结

HDFS作为Hadoop生态系统的核心组件之一,提供了高容错性、高可扩展性、高吞吐量的分布式文件系统。它适用于大数据存储和处理、数据仓库、分布式日志收集等多种场景。通过使用HDFS,我们可以更好地管理和处理大规模数据集,实现大数据的存储、计算和分析。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
367 6
|
8月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
121 0
|
8月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
186 5
|
8月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
101 4
|
8月前
|
XML 分布式计算 资源调度
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
347 5
|
3月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
294 70
|
8月前
|
SQL 分布式计算 监控
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
144 3
|
8月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
122 4
|
8月前
|
XML 资源调度 网络协议
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
389 4
|
8月前
|
分布式计算 资源调度 Hadoop
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
231 4