大数据-139 - ClickHouse 集群 表引擎详解4 - MergeTree 实测案例 ReplacingMergeTree SummingMergeTree

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-139 - ClickHouse 集群 表引擎详解4 - MergeTree 实测案例 ReplacingMergeTree SummingMergeTree

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(正在更新···)

章节内容

上节我们完成了如下的内容:


MergeTree 存储结构

MergeTree 数据标记

MergeTree 分区 索引 标记 压缩协同

ReplacingMergeTree

简介

这个引擎是在MergeTree的基础上,添加了处理重复数据的功能,该引擎和MergeTree的不同之处在于它会删除具有相同主键的重复项。


特点

使用ORDER BY排序键作为判断重复的唯一键

数据的去重只会在合并的过程中触发

以数据分区为单位删除重复数据,不同分区的重复数据不会被删除

找到重复数据的方式依赖数据已经ORDER BY排好顺序了

如果没有ver版本号,则保留重复数据的最后一行

如果设置ver版本号,则保留重复数据中ver版本号最大的数据

案例

创建新表

CREATE TABLE replace_table (
  id String,
  code String,
  create_time DateTime
) ENGINE = ReplacingMergeTree()
PARTITION BY toYYYYMM(create_time)
ORDER BY (id, code)
PRIMARY KEY id;

运行结果如下图所示:

插入数据

INSERT INTO replace_table VALUES ('A001', 'C1', '2024-08-01 08:00:00');
INSERT INTO replace_table VALUES ('A001', 'C1', '2024-08-02 08:00:00');
INSERT INTO replace_table VALUES ('A001', 'C8', '2024-08-03 08:00:00');
INSERT INTO replace_table VALUES ('A001', 'C9', '2024-08-04 08:00:00');
INSERT INTO replace_table VALUES ('A002', 'C2', '2024-08-05 08:00:00');
INSERT INTO replace_table VALUES ('A003', 'C3', '2024-08-06 08:00:00');

运行结果如下所示:

optimize

首先说一下,optimize的作用是:

合并数据块:ClickHouse是一个列式的数据库,它的数据是以数据块(parts)的形式存储在磁盘上,OPTIMIZE TABLE 语句通过较小的数据块来减少块的数量,从而提高查询性能和磁盘利用率。

删除标记的行:如果表中有被标记为删除的行,这些行将在优化过程中被真正删除,释放相应的空间。

分区管理:可以对表的指定分区进行优化,以减少分区内的碎片。

SELECT
  *
FROM
  replace_table;

运行结果如下图所示,通过观察,去重是根据ORDER BY来的,并非 PRIMARY KEY:

继续插入一条数据:

INSERT INTO replace_table VALUES('A001', 'c1', '2024-01-01 08:00:00')

执行结果如下所示:

观察上图可以看出,不同分区的数据不会去重。

SummingMergeTree

简介

该引擎来自MergeTree,区别在于,当合并SummingMergeTree表的数据片段时,ClickHouse会把所有具有相同聚合数据的条件KEY的行合并为一行,该行包含了被合并的行中具有数值数据类型的列的汇总值。

如果聚合数据的条件KEY的组合方式使得单个键值对应于大量的行,则可以显著减少存储空间并加快数据查询的速度。对于不可加的列,会取一个最先出现的值。


特点

用ORDER BY排序键作为聚合数据的条件KEY

合并分区的时候触发汇总逻辑

以数据分区为单位聚合数据,不同分区的数据不会被汇总

如果在定义引擎时指定了Columns汇总列(非主键)则SUM汇总这些字段

如果没有指定,则汇总所有非主键的数值类型字段

SUM汇总相同的聚合KEY的数据,依赖ORDER BY排序

同一分区的SUM汇总过程,非汇总字段的数据保留第一行取值

支持嵌套结构,但列字段名称必须以Map后缀结束

案例1

创建新表

CREATE TABLE smt_table (
  date Date,
  name String,
  a UInt16,
  b UInt16
) ENGINE = SummingMergeTree(date, (date, name), 8192, (a));

运行的结果如下图所示:

插入数据

insert into smt_table (date, name, a, b) values ('2024-08-10', 'a', 1, 2);
insert into smt_table (date, name, a, b) values ('2024-08-10', 'b', 2, 1);
insert into smt_table (date, name, a, b) values ('2024-08-11', 'b', 3, 8);
insert into smt_table (date, name, a, b) values ('2024-08-11', 'b', 3, 8);
insert into smt_table (date, name, a, b) values ('2024-08-11', 'a', 3, 1);
insert into smt_table (date, name, a, b) values ('2024-08-12', 'c', 1, 3);

运行结果如下所示:

optimize

等待一段时间,或者手动 optimize table 来触发合并,再查询信息:

OPTIMIZE TABLE smt_table;
SELECT 
  *
FROM 
  smt_table;

执行结果如下图所示:

通过观察,我们会发现,2024-08-11, b 和 a 列合并相加了,b列取了8(因为b列为8的数据最先插入的)

案例2

创建新表

CREATE TABLE summing_table(
  id String,
  city String,
  v1 UInt32,
  v2 Float64,
  create_time DateTime
) ENGINE = SummingMergeTree()
PARTITION BY toYYYYMM(create_time)
ORDER BY (id, city);

执行结果如下图:

插入数据

insert into table summing_table values('A000','beijing',10,20,'2024-08-20 08:00:00');
insert into table summing_table values('A000','beijing',20,30,'2024-08-30 08:00:00');
insert into table summing_table values('A000','shanghai',10,20,'2024-08-20 08:00:00');
insert into table summing_table values('A000','beijing',10,20,'2024-06-20 08:00:00');
insert into table summing_table values('A001','beijing',50,60,'2024-02-20 08:00:00');

执行结果如下图所示:

optimize

OPTIMIZE TABLE summing_table;
SELECT 
  *
FROM
  summing_table;

执行结果如下图所示:


通过观察,根据ORDER BY排序键(id, city)作为聚合KEY,因为没有在建表时指定SummingMergeTree的SUM列,所以把所有非主键数值类型的列都进行了SUM处理。


案例3

SummingMergeTree支持嵌套类型的字段,但列字段名称必须以Map后缀结束。


创建新表

CREATE TABLE summing_table_nested(
  id String,
  nestMap Nested(
    id UInt32,
    key UInt32,
    val UInt64
  ),
  create_time DateTime
) ENGINE = SummingMergeTree()
PARTITION BY toYYYYMM(create_time)
ORDER BY id;

执行的结果如下图所示:

插入数据

INSERT INTO summing_table_nested VALUES ('1', [101, 102], [201, 202], [1001, 1002], '2024-08-01 10:00:00');
INSERT INTO summing_table_nested VALUES ('2', [103, 104], [203, 204], [1003, 1004], '2024-08-01 10:00:00');
INSERT INTO summing_table_nested VALUES ('1', [105, 106], [205, 206], [1005, 1006], '2024-08-01 10:00:00');
INSERT INTO summing_table_nested VALUES ('2', [107, 108], [207, 208], [1007, 1008], '2024-08-02 10:00:00');
INSERT INTO summing_table_nested VALUES ('3', [109, 110], [209, 210], [1009, 1010], '2024-08-02 10:00:00');
INSERT INTO summing_table_nested VALUES ('4', [111, 112], [211, 212], [1011, 1012], '2024-08-02 10:00:00');

执行过程如下图所示:

执行过程如下图所示:

可以看到,我们插入了6条数据,但是查询到的只有4条,而且此外也进行计算的SUM处理。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
5月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
5月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
423 56
|
10月前
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。
|
9月前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
388 0
|
2月前
|
存储 监控 分布式数据库
ClickHouse分布式数据库动态伸缩(弹性扩缩容)的实现
实现ClickHouse数据库的动态伸缩需要持续的维护和精细的操作。从集群配置到数据迁移,再到监控和自动化,每一步都要仔细管理以确保服务的可靠性和性能。这些活动可以显著提高应用的响应性和成本效率,帮助业务根据实际需求灵活调整资源分配。
190 10
|
4月前
|
关系型数据库 MySQL 定位技术
MySQL与Clickhouse数据库:探讨日期和时间的加法运算。
这一次的冒险就到这儿,期待你的再次加入,我们一起在数据库的世界中找寻下一个宝藏。
206 9
|
11月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
9月前
|
SQL Unix OLAP
ClickHouse安装教程:开启你的列式数据库之旅
ClickHouse 是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。本文介绍了 ClickHouse 的基本使用步骤,包括下载二进制文件、安装应用、启动服务器和客户端、创建表、插入数据以及查询新表。还提到了图形客户端 DBeaver 的使用,使操作更加直观。通过这些步骤,用户可以快速上手并利用 ClickHouse 的强大性能进行数据分析。
996 4

热门文章

最新文章

推荐镜像

更多