Ultralytics YOLO11来啦!更快!更强!

简介: YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的 Joseph Redmon 和 Ali Farhadi 开发。

01

YOLO发展历程

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的 Joseph Redmon 和 Ali Farhadi 开发。

image.png

目前YOLO11提供两种许可选项,以适应不同的使用情况:

-AGPL-3.0 许可证:这种经 OSI 批准的开源许可证非常适合学生和爱好者使用,可促进开放协作和知识共享。

-企业许可证:该许可证专为商业用途设计,允许将Ultralytics 软件和人工智能模型无缝集成到商业产品和服务中,绕过了AGPL-3.0 的开源要求。


02

模型性能

Ultralytics YOLO11,作为新的SOTA模型,不仅继承了之前YOLO系列的优势,还引入了创新特性和改进,提升了性能和灵活性。它以快速、精准、易用为特点,成为处理目标检测、跟踪、实例分割、图像分类和姿态估计等多种视觉任务的理想选择。

image.png

03

最佳实践

我们使用魔搭社区免费算力(GPU)体验YOLO11,希望能够帮助您充分利用 YOLO11。

image.png

模型链接:

https://modelscope.cn/models/AI-ModelScope/YOLO11

数据集链接:

https://modelscope.cn/datasets/modelscope/coco2017val/

代码链接:

https://github.com/ultralytics/ultralytics/

技术文档:

https://docs.ultralytics.com/

环境安装

安装ultralytics并检查运行环境。

%pip install ultralytics
import ultralytics
ultralytics.checks()

image.png

模型推理

在魔搭社区下载模型并推理,YOLO11 可直接在命令行界面 (CLI) 中使用 `yolo` 命令执行各种任务和模式,并接受其他参数,例如 `imgsz=640`。

!modelscope download --model=AI-ModelScope/YOLO11 --local_dir ./ yolo11n.pt
!yolo predict model="/mnt/workspace/yolo11n.pt" source='https://ultralytics.com/images/zidane.jpg'

image.png

模型评估

下载COCO数据集,并在COCO数据集的 `val` 或 `test` 分割上验证模型的准确性。

# Download COCO val
!modelscope download --dataset="modelscope/coco2017val" --local_dir ./ coco2017val.zip
!unzip -q coco2017val.zip -d datasets && rm coco2017val.zip  # unzip
!modelscope download --dataset="modelscope/coco2017val" --local_dir ./ coco8.zip
!unzip -q coco8.zip -d datasets && rm coco8.zip  # unzip
# Validate YOLO11n on COCO8 val
!yolo val model="/mnt/workspace/yolo11n.pt" data=coco8.yaml

image.png

模型微调

image.png

图片来源:https://raw.githubusercontent.com/ultralytics/assets/

安装和使用可视化日志工具TensorBoard

#@title Select YOLO11 🚀 logger {run: 'auto'}
!pip install tensorboard -U
logger = 'TensorBoard' #@param ['Comet', 'TensorBoard']
if logger == 'Comet':
  %pip install -q comet_ml
  import comet_ml; comet_ml.init()
elif logger == 'TensorBoard':
  %load_ext tensorboard
  %tensorboard --logdir ./runs
# Train YOLO11n on COCO8 for 3 epochs
!yolo train model="/mnt/workspace/yolo11n.pt" data=coco8.yaml epochs=3 imgsz=640

模型导出

使用“format”参数将 YOLO11 模型导出为任何支持的格式,例如“format=onnx”或者“format=torchscript”。

!yolo export model="/mnt/workspace/yolo11n.pt" format=torchscript

04

python体验

YOLO11 采用了 Python 优先原则进行重新设计,从而实现无缝的 Python YOLO 体验。YOLO11 模型可以从经过训练的检查点加载,也可以从头开始创建。如下是使用python来训练、验证、预测和导出模型的示例代码。

from ultralytics import YOLO
# Load a model
model = YOLO('yolo11n.yaml')  # build a new model from scratch
model = YOLO('yolo11n.pt')  # load a pretrained model (recommended for training)
# Use the model
results = model.train(data='coco8.yaml', epochs=3)  # train the model
results = model.val()  # evaluate model performance on the validation set
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
results = model.export(format='onnx')  # export the model to ONNX format

任务模型

YOLO11可以在多种视觉任务上训练,评估,推理和导出。

image.png

图片来源:https://raw.githubusercontent.com/ultralytics/assets/

检测任务

YOLO11检测模型没有后缀,使用默认的 YOLO11 模型

# Load YOLO11n, train it on COCO128 for 3 epochs and predict an image with it
from ultralytics import YOLO
model = YOLO('yolo11n.pt')  # load a pretrained YOLO11n detection model
model.train(data='coco8.yaml', epochs=3)  # train the model
model('https://ultralytics.com/images/bus.jpg')  # predict on an image

分割任务

# Load YOLO11n-seg, train it on COCO128-seg for 3 epochs and predict an image with it
from ultralytics import YOLO
!modelscope download --model=AI-ModelScope/YOLO11 --local_dir ./ yolo11n-seg.pt
model = YOLO('/mnt/workspace/yolo11n-seg.pt')  # load a pretrained YOLO11n segmentation model
model.train(data='coco8-seg.yaml', epochs=3)  # train the model
model('https://ultralytics.com/images/bus.jpg')  # predict on an image

分类任务

# Load YOLO11n-cls, train it on mnist160 for 3 epochs and predict an image with it
from ultralytics import YOLO
!modelscope download --model=AI-ModelScope/YOLO11 --local_dir ./ yolo11n-cls.pt
model = YOLO('/mnt/workspace/yolo11n-cls.pt')  # load a pretrained YOLO11n classification model
model.train(data='mnist160', epochs=3)  # train the model
model('https://ultralytics.com/images/bus.jpg')  # predict on an image

动作检测任务

# Load YOLO11n-pose, train it on COCO8-pose for 3 epochs and predict an image with it
from ultralytics import YOLO
!modelscope download --model=AI-ModelScope/YOLO11 --local_dir ./ yolo11n-pose.pt
model = YOLO('yolo11n-pose.pt')  # load a pretrained YOLO11n pose model
model.train(data='coco8-pose.yaml', epochs=3)  # train the model
model('https://ultralytics.com/images/bus.jpg')  # predict on an image

定向边界框 (OBB)

# Load YOLOv8n-obb, train it on DOTA8 for 3 epochs and predict an image with it
from ultralytics import YOLO
!modelscope download --model=AI-ModelScope/YOLO11 --local_dir ./ yolo11n-obb.pt
model = YOLO('yolo11n-obb.pt')  # load a pretrained YOLOv8n OBB model
model.train(data='dota8.yaml', epochs=3)  # train the model
model('https://ultralytics.com/images/bus.jpg')  # predict on an image

image.png

点击链接👇即可跳转模型~

https://modelscope.cn/models/AI-ModelScope/YOLO11?from=alizishequ__text

相关文章
|
并行计算
最新YOLOv8(2023年8月版本)安装配置!一条龙傻瓜式安装,遇到问题评论区提问
最近需要使用YOLOv8,百度了一下现在网上大多数教程都是比较早期的教程,很多文件已经大不相同,于是我根据官方readme文档,总结了一套安装方法,只需要按照本教程,复制每一段代码,按照教程配置好相应文件即可直接使用。
9195 2
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
20066 0
|
10月前
|
机器学习/深度学习 数据可视化 算法
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1658 6
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
9月前
|
人工智能 编解码 自动驾驶
RF-DETR:YOLO霸主地位不保?开源 SOTA 实时目标检测模型,比眨眼还快3倍!
RF-DETR是首个在COCO数据集上突破60 mAP的实时检测模型,结合Transformer架构与DINOv2主干网络,支持多分辨率灵活切换,为安防、自动驾驶等场景提供高精度实时检测方案。
1524 6
RF-DETR:YOLO霸主地位不保?开源 SOTA 实时目标检测模型,比眨眼还快3倍!
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
3154 0
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
2776 2
YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
|
10月前
|
编解码 算法 计算机视觉
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
1819 11

热门文章

最新文章