【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)

简介: 该专栏聚焦YOLO目标检测的创新改进与实战,介绍了轻量级CNNs和注意力机制在移动设备上的应用。文章提出了一种名为GhostNetV2的新架构,结合了硬件友好的DFC注意力机制,强化了特征表达能力和全局信息捕获,同时保持低计算成本和高效推理。GhostNetV2在ImageNet上以167M FLOPs达到75.3%的top-1准确率,优于同类模型。创新点包括DFC注意力、模型结构优化和效率提升。源代码可在GitHub和MindSpore平台上找到。此外,还提到了YOLOv8的相关实现和任务配置。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

轻量级卷积神经网络(CNNs)专为移动设备上的应用而设计,具有更快的推理速度。卷积操作只能捕获窗口区域内的局部信息,这限制了性能的进一步提升。将自注意力引入到卷积中可以很好地捕获全局信息,但这将大大增加实际速度的负担。在本文中,我们提出了一种硬件友好的注意力机制(称为DFC注意力),然后为移动应用呈现了一个新的GhostNetV2架构。所提出的DFC注意力基于全连接层构建,不仅可以在常见硬件上快速执行,还能捕获长距离像素之间的依赖关系。我们进一步重新审视了之前GhostNet中的表达性瓶颈,并提出通过DFC注意力增强通过廉价操作产生的扩展特征,以便GhostNetV2块可以同时聚合局部和长距离信息。广泛的实验展示了GhostNetV2相较于现有架构的优越性。例如,在ImageNet上,它以167M FLOPs实现了75.3%的top-1准确率,显著超过了具有类似计算成本的GhostNetV1(74.5%)。源代码将在 https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorchhttps://gitee.com/mindspore/models/tree/master/research/cv/ghostnetv2 上提供。

创新点

GhostNetV2的创新点总结如下:

  1. 增强的特征表达能力:相比于原始的GhostNet,GhostNetV2通过引入DFC(Decoupled Fully Connected)注意力机制,有效增强了网络对长距离空间位置依赖性的捕获能力。这使得模型能够同时整合局部和远程的信息,从而提升了特征的表达力。

  2. 硬件友好的DFC注意力机制:GhostNetV2提出了一种新颖的硬件友好的DFC注意力机制,通过解耦全连接层的方式,大幅降低了计算复杂度。DFC注意力通过沿水平和垂直方向聚集特征,有效捕获全局信息,同时保持了对移动设备的高效部署能力。

  3. 高效的计算成本:通过采用DFC注意力机制和对特征进行下采样,GhostNetV2在不牺牲性能的情况下,显著减少了模型的计算成本。这使得GhostNetV2在保持轻量级的同时,还能在移动设备上快速推理,提高了模型的实用性。

  4. 模型结构的优化:GhostNetV2采用了Inverted bottleneck设计,并通过DFC注意力机制与Ghost模块并行工作的方式,增强了扩展特征的表达能力。这种设计改进了模型的"expressiveness"和"capacity",同时保持了Ghost模块减少参数量和计算量的优势。

  5. 实验验证的性能提升:GhostNetV2通过广泛的实验验证,展示了其在ImageNet等标准数据集上的优越性能。相比GhostNetV1,GhostNetV2在相似的计算成本下,实现了更高的准确率,证明了其结构优化和注意力机制引入的有效性。

综上所述,GhostNetV2通过创新的DFC注意力机制和模型结构优化,在保持轻量级和高效部署的基础上,显著提升了模型的性能和表达能力。

yolov8 引入


class GhostV2(nn.Module):


    def __init__(self, num_in, num_out, num_mid, kernel_size, stride=1, act_type='relu', use_se=False, layer_id=None):
        super(GhostV2, self).__init__()
        self.use_ori_module = layer_id <= 1
        if self.use_ori_module:
            self.ghost1 = GhostModule(num_in, num_mid, kernel_size=1,
                                      stride=1, padding=0, act_type=act_type)
        else:
            self.ghost1 = GhostModuleMul(num_in, num_mid, kernel_size=1,
                                         stride=1, padding=0, act_type=act_type)

        self.use_dw = stride > 1
        self.dw = None
        if self.use_dw:
            self.dw = ConvUnit(num_mid, num_mid, kernel_size=kernel_size, stride=stride,
                               padding=self._get_pad(kernel_size), act_type=act_type, num_groups=num_mid, use_act=False)

        self.use_se = use_se
        if use_se:
            self.se = SE_Ghost(num_mid)

        self.ghost2 = GhostModule(num_mid, num_out, kernel_size=1, stride=1,
                                  padding=0, act_type=act_type, use_act=False)

        self.down_sample = False
        if num_in != num_out or stride != 1:
            self.down_sample = True
        self.shortcut = None
        if self.down_sample:
            self.shortcut = nn.Sequential(
                ConvUnit(num_in, num_in, kernel_size=kernel_size, stride=stride,
                         padding=self._get_pad(kernel_size), num_groups=num_in, use_act=False),
                ConvUnit(num_in, num_out, kernel_size=1, stride=1,
                         padding=0, num_groups=1, use_act=False),
            )

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/136170972

相关文章
|
5天前
|
存储 监控 安全
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
32 11
|
2月前
|
1月前
|
安全 网络安全 数据安全/隐私保护
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限。它通过设置一系列规则,控制谁可以访问特定资源、在什么条件下访问以及可以执行哪些操作。ACL 可以应用于路由器、防火墙等设备,分为标准、扩展、基于时间和基于用户等多种类型,广泛用于企业网络和互联网中,以增强安全性和精细管理。
162 7
|
2月前
|
Linux 开发工具 Android开发
FFmpeg开发笔记(六十)使用国产的ijkplayer播放器观看网络视频
ijkplayer是由Bilibili基于FFmpeg3.4研发并开源的播放器,适用于Android和iOS,支持本地视频及网络流媒体播放。本文详细介绍如何在新版Android Studio中导入并使用ijkplayer库,包括Gradle版本及配置更新、导入编译好的so文件以及添加直播链接播放代码等步骤,帮助开发者顺利进行App调试与开发。更多FFmpeg开发知识可参考《FFmpeg开发实战:从零基础到短视频上线》。
189 2
FFmpeg开发笔记(六十)使用国产的ijkplayer播放器观看网络视频
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
70 3
|
2月前
|
安全 网络架构
MPLS线路构建稳定、高效网络的优选方案
【10月更文挑战第17天】MPLS线路构建稳定、高效网络的优选方案
70 5
|
12天前
|
云安全 人工智能 安全
|
16天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
42 3
|
23天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
1月前
|
SQL 安全 前端开发
PHP与现代Web开发:构建高效的网络应用
【10月更文挑战第37天】在数字化时代,PHP作为一门强大的服务器端脚本语言,持续影响着Web开发的面貌。本文将深入探讨PHP在现代Web开发中的角色,包括其核心优势、面临的挑战以及如何利用PHP构建高效、安全的网络应用。通过具体代码示例和最佳实践的分享,旨在为开发者提供实用指南,帮助他们在不断变化的技术环境中保持竞争力。
下一篇
DataWorks