Numpy学习笔记

简介: Numpy学习笔记

一、Numpy基础数据结构

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

① 实际的数据

② 描述这些数据的元数据

二、常见方法

import numpy as np
ar = np.array([[[1,2,3,4,5,6,7],[1,2,3,4,5,6,7],[1,2,3,4,5,6,7]],[[1,2,3,4,5,6,7],[1,2,3,4,5,6,7],[1,2,3,4,5,6,7]]])
print(ar)          # 输出数组,注意数组的格式:中括号,元素之间没有逗号(和列表区分)
print(ar.ndim)     # 输出数组维度的个数(轴数),或者说“秩”,维度的数量也称rank
print(ar.shape)    # 数组的维度,对于n行m列的数组,shape为(n,m)
print(ar.size)     # 数组的元素总数,对于n行m列的数组,元素总数为n*m
print(ar.dtype)    # 数组中元素的类型,类似type()(注意了,type()是函数,.dtype是方法)
print(ar.itemsize) # 数组中每个元素的字节大小,int32l类型字节为4,float64的字节为8
print(ar.data)     # 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。
#ar   # 交互方式下输出,会有array(数组)

三、创建数组

1.array()函数创建

ar1 = np.array(range(10))   # 整型
ar2 = np.array([1,2,3.14,4,5])   # 浮点型
ar3 = np.array([[1,2,3],('a','b','c')])   # 二维数组:嵌套序列(列表,元祖均可)
print(ar1,type(ar1),ar1.dtype)
print(ar2,type(ar2),ar2.dtype)
print(ar3,ar3.shape,ar3.ndim,ar3.size)     # 二维数组,共6个元素

2.arange()函数创建

print(np.arange(10))    # 返回0-9,整型

print(np.arange(10.0))  # 返回0.0-9.0,浮点型

print(np.arange(5,12))  # 返回5-11

print(np.arange(5.0,12,2))  # 返回5.0-12.0,步长为2

print(np.arange(10000))  # 如果数组太大而无法打印,NumPy会自动跳过数组的中心部分,并只打印边角:

3.linspace()函数创建

# numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
# start:起始值,stop:结束值
# num:生成样本数,默认为50
# endpoint:如果为真,则停止是最后一个样本。否则,不包括在内。默认值为True。效果可以理解为 num-1
# retstep:如果为真,返回(样本,步骤),其中步长是样本之间的间距 → 输出为一个包含2个元素的元祖,第一个元素为array,第二个为步长实际值
ar1 = np.linspace(2.0, 3.0, num=5)
ar2 = np.linspace(2.0, 3.0, num=5, endpoint=False)
ar3 = np.linspace(2.0, 3.0, num=5, retstep=True)
print(ar1,type(ar1))
print(ar2)
print(ar3,type(ar3))

4.zeros()/zeros_like()/ones()/ones_like()

# 创建数组:zeros()/zeros_like()/ones()/ones_like()
# numpy.zeros(shape, dtype=float, order='C'):返回给定形状和类型的新数组,用零填充。
# shape:数组纬度,二维以上需要用(),且输入参数为整数
# dtype:数据类型,默认numpy.float64
# order:是否在存储器中以C或Fortran连续(按行或列方式)存储多维数据。
ar1 = np.zeros(5)
ar2 = np.zeros((2,2))
print(ar1,ar1.dtype)
print(ar2,ar2.dtype)
print("=" * 30)
# 返回具有与给定数组相同的形状和类型的零数组,这里ar4根据ar3的形状和dtype创建一个全0的数组
ar3 = np.array([list(range(5)),list(range(5,10))])
ar4 = np.zeros_like(ar3)
print(ar3)
print(ar4)
print("=" * 30)
# ones()/ones_like()和zeros()/zeros_like()一样,只是填充为1
ar5 = np.ones(9)
ar6 = np.ones((2,3,4))
ar7 = np.ones_like(ar3)
print(ar5)
print(ar6)
print(ar7)

5.eye函数创建

# 创建数组:eye()

# 创建一个正方的N*N的单位矩阵,对角线值为1,其余为0

print(np.eye(5))

四、Numpy通用函数

1.数组形状

ar1 = np.arange(10)
ar2 = np.ones((5,2))
print(ar1,'\n',ar1.T)
print(ar2,'\n',ar2.T)
print("=" * 30)
# .T方法:转置,例如原shape为(3,4)/(2,3,4),转置结果为(4,3)/(4,3,2) → 所以一维数组转置后结果不变
ar3 = ar1.reshape(2,5)     # 用法1:直接将已有数组改变形状
ar4 = np.zeros((4,6)).reshape(3,8)   # 用法2:生成数组后直接改变形状 4*6=24 reshape的数字乘积同样需要等于24,元素个数要保持一直
ar5 = np.reshape(np.arange(12),(3,4))   # 用法3:参数内添加数组,目标形状
print(ar1,'\n',ar3)
print(ar4)
print(ar5)
print("=" * 30)
# numpy.reshape(a, newshape, order='C'):为数组提供新形状,而不更改其数据,所以元素数量需要一致!!
ar6 = np.resize(np.arange(5),(3,4))
print(ar6)
# numpy.resize(a, new_shape):返回具有指定形状的新数组,如有必要可重复填充所需数量的元素。
# 注意了:.T/.reshape()/.resize()都是生成新的数组!!!

2.数组复制

# 数组的复制
ar1 = np.arange(10)
ar2 = ar1
print(ar2 is ar1)
ar1[2] = 9
print(ar1,ar2)
# 回忆python的赋值逻辑:指向内存中生成的一个值 → 这里ar1和ar2指向同一个值,所以ar1改变,ar2一起改变
ar3 = ar1.copy()
print(ar3 is ar1)
ar1[0] = 9
print(ar1,ar3)
# copy方法生成数组及其数据的完整拷贝
# 再次提醒:.T/.reshape()/.resize()都是生成新的数组!!!

3.数组类型转换

ar1 = np.arange(10,dtype=float)
print(ar1,ar1.dtype)
print('-----')
# 可以在参数位置设置数组类型
ar2 = ar1.astype(np.int32)
print(ar2,ar2.dtype)
print(ar1,ar1.dtype)
# a.astype():转换数组类型
# 注意:养成好习惯,数组类型用np.int32,而不是直接int32

4.数组堆叠

a = np.arange(5)    # a为一维数组,5个元素
b = np.arange(5,9) # b为一维数组,4个元素
ar1 = np.hstack((a,b))  # 注意:((a,b)),这里形状可以不一样
print(a,a.shape)
print(b,b.shape)
print(ar1,ar1.shape)
a = np.array([[1],[2],[3]])   # a为二维数组,3行1列
b = np.array([['a'],['b'],['c']])  # b为二维数组,3行1列
ar2 = np.hstack((a,b))  # 注意:((a,b)),这里形状必须一样
print(a,a.shape)
print(b,b.shape)
print(ar2,ar2.shape)
print("=" * 30)
# numpy.hstack(tup):水平(按列顺序横向)堆叠数组
a = np.arange(5)
b = np.arange(5,10)
ar1 = np.vstack((a,b))
print(a,a.shape)
print(b,b.shape)
print(ar1,ar1.shape)
a = np.array([[1],[2],[3]])
b = np.array([['a'],['b'],['c'],['d']])
ar2 = np.vstack((a,b))  # 这里形状可以不一样
print(a,a.shape)
print(b,b.shape)
print(ar2,ar2.shape)
print("=" * 30)
# numpy.vstack(tup):垂直(按列顺序纵向)堆叠数组
a = np.arange(5)
b = np.arange(5,10)
ar1 = np.stack((a,b))
ar2 = np.stack((a,b),axis = 1) #默认0按照列进行纵向的连接,1表示按照列进行横向的连接
print(a,a.shape)
print(b,b.shape)
print(ar1,ar1.shape)
print(ar2,ar2.shape)
# numpy.stack(arrays, axis=0):沿着新轴连接数组的序列,形状必须一样!
# 重点解释axis参数的意思,假设两个数组[1 2 3]和[4 5 6],shape均为(3,0)
# axis=0:[[1 2 3] [4 5 6]],shape为(2,3)
# axis=1:[[1 4] [2 5] [3 6]],shape为(3,2)

5.数组拆分

ar = np.arange(16).reshape(4,4)
ar1 = np.hsplit(ar,2)
print(ar)
print(ar1,type(ar1))
# numpy.hsplit(ary, indices_or_sections):将数组水平(逐列)拆分为多个子数组 → 按列拆分
# 输出结果为列表,列表中元素为数组
ar2 = np.vsplit(ar,4)
print(ar2,type(ar2))
# numpy.vsplit(ary, indices_or_sections)::将数组垂直(行方向)拆分为多个子数组 → 按行拆

6.数组简单运算

# 数组简单运算
ar = np.arange(6).reshape(2,3)
print(ar + 10)   # 加法
print(ar * 2)   # 乘法
print(1 / (ar+1))  # 除法
print(ar ** 0.5)  # 幂
# 与标量的运算
print(ar.mean())  # 求平均值
print(ar.max())  # 求最大值
print(ar.min())  # 求最小值
print(ar.std())  # 求标准差
print(ar.var())  # 求方差
print(ar.sum(), np.sum(ar,axis = 0))  # 求和,np.sum() → axis为0,按列求和;axis为1,按行求和
print(np.sort(np.array([1,4,3,2,5,6])))  # 排序
# 常用函数

五、Numpy索引及切片

1.基本索引及切片

ar = np.arange(20)
print(ar)
print(ar[4])
print(ar[3:6])
print('-----')
# 一维数组索引及切片
ar = np.arange(16).reshape(4,4)
print(ar, '数组轴数为%i' %ar.ndim)   # 4*4的数组
print(ar[2],  '数组轴数为%i' %ar[2].ndim)  # 切片为下一维度的一个元素,所以是一维数组
print(ar[2][1]) # 二次索引,得到一维数组中的一个值
print(ar[1:3],  '数组轴数为%i' %ar[1:3].ndim)  # 切片为两个一维数组组成的二维数组
print(ar[2,2])  # 切片数组中的第三行第三列 → 10
print(ar[:2,1:])  # 切片数组中的1,2行、2,3,4列 → 二维数组
print('-----')
# 二维数组索引及切片
ar = np.arange(8).reshape(2,2,2)
print(ar, '数组轴数为%i' %ar.ndim)   # 2*2*2的数组
print(ar[0],  '数组轴数为%i' %ar[0].ndim)  # 三维数组的下一个维度的第一个元素 → 一个二维数组
print(ar[0][0],  '数组轴数为%i' %ar[0][0].ndim)  # 三维数组的下一个维度的第一个元素下的第一个元素 → 一个一维数组
print(ar[0][0][1],  '数组轴数为%i' %ar[0][0][1].ndim)  
# **三维数组索引及切片

2.数组索引及切片的值更改、复制

ar = np.arange(10)
print(ar)
ar[5] = 100
ar[7:9] = 200
print(ar)
# 一个标量赋值给一个索引/切片时,会自动改变/传播原始数组
ar = np.arange(10)
b = ar.copy()
b[7:9] = 200
print(ar)
print(b)
# 复制

六、Numpy随机数

1.随机数生成

samples = np.random.normal(size=(4,4))

print(samples)

# 生成一个标准正太分布的4*4样本值

2.均匀分布

a = np.random.rand()
print(a,type(a))  # 生成一个随机浮点数
b = np.random.rand(4)
print(b,type(b))  # 生成形状为4的一维数组
c = np.random.rand(2,3)
print(c,type(c))  # 生成形状为2*3的二维数组,注意这里不是((2,3))
samples1 = np.random.rand(1000)
samples2 = np.random.rand(1000)

3.正态分布

samples1 = np.random.randn(1000)

samples2 = np.random.randn(1000)

4.随机整数

# numpy.random.randint(low, high=None, size=None, dtype='l'):生成一个整数或N维整数数组
# 若high不为None时,取[low,high)之间随机整数,否则取值[0,low)之间随机整数,且high必须大于low 
# dtype参数:只能是int类型  
print(np.random.randint(2))
# low=2:生成1个[0,2)之间随机整数  
print(np.random.randint(2,size=5))
# low=2,size=5 :生成5个[0,2)之间随机整数
print(np.random.randint(2,6,size=5))
# low=2,high=6,size=5:生成5个[2,6)之间随机整数  
print(np.random.randint(2,size=(2,3)))
# low=2,size=(2,3):生成一个2x3整数数组,取数范围:[0,2)随机整数 
print(np.random.randint(2,6,(2,3)))
# low=2,high=6,size=(2,3):生成一个2*3整数数组,取值范围:[2,6)随机整数

七、Numpy数据的输入输出

1.存储数组数据

import os
os.chdir('C:/Users/Hjx/Desktop/')
ar = np.random.rand(5,5)
print(ar)
np.save('arraydata.npy', ar)
# 也可以直接 np.save('C:/Users/Hjx/Desktop/arraydata.npy', ar)

2.读取数组数据

# 读取数组数据 .npy文件


ar_load =np.load('arraydata.npy')

print(ar_load)

# 也可以直接 np.load('C:/Users/Hjx/Desktop/arraydata.npy')

3.存储/读取文本文件

# 存储/读取文本文件
ar = np.random.rand(5,5)
np.savetxt('array.txt',ar, delimiter=',')
# np.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '):存储为文本txt文件
ar_loadtxt = np.loadtxt('array.txt', delimiter=',')
print(ar_loadtxt)
# 也可以直接 np.loadtxt('C:/Users/Hjx/Desktop/array.txt')

 

相关文章
|
2月前
|
Python
Numpy学习笔记(一):array()、range()、arange()用法
这篇文章是关于NumPy库中array()、range()和arange()函数的用法和区别的介绍。
63 6
Numpy学习笔记(一):array()、range()、arange()用法
|
2月前
|
索引 Python
Numpy学习笔记(三):np.where和np.logical_and/or/not详解
NumPy库中`np.where`和逻辑运算函数`np.logical_and`、`np.logical_or`、`np.logical_not`的使用方法和示例。
191 1
Numpy学习笔记(三):np.where和np.logical_and/or/not详解
|
2月前
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
57 1
|
2月前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
55 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
2月前
|
机器学习/深度学习 索引 Python
Numpy学习笔记(二):argmax参数中axis=0,axis=1,axis=-1详解附代码
本文解释了NumPy中`argmax`函数的`axis`参数在不同维度数组中的应用,并通过代码示例展示了如何使用`axis=0`、`axis=1`和`axis=-1`来找到数组中最大值的索引。
179 0
Numpy学习笔记(二):argmax参数中axis=0,axis=1,axis=-1详解附代码
|
6月前
|
BI 测试技术 索引
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-1
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)
|
2月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
46 0
|
4月前
|
vr&ar 索引 Python
Numpy学习笔记之Numpy练习
Numpy学习笔记之Numpy练习
|
6月前
|
存储 API C语言
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-2
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)
|
SQL Java Go
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(1)
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(1)
388 0